metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

A new alkaline earth metal tetra­fluoro­terephthalate: [Ba(tfBDC)(DMF)(EtOH)]

aUniversity of Cologne, Greinstrasse 6, D-50939 Cologne, Germany
*Correspondence e-mail: uwe.ruschewitz@uni-koeln.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 27 August 2016; accepted 4 September 2016; online 13 September 2016)

[Ba(C8F4O4)(C3H7NO)(C2H5OH)] or [Ba(tfBDC)(DMF)(EtOH)], where tfBDC2− = tetra­fluoro­terephthalate, DMF = di­methyl­formamide, EtOH = ethanol, systematic name poly[(di­methyl­formamide-1κO)(ethanol-1κO)(μ5-2,3,5,6-tetra­fluoro­benzene­dicarboxyl­ato-1:2κ2O1;1:3κ2O1′;4κO4;5κO4′)barium(II)], has been synthesized by a diffusion controlled synthesis from an EtOH/DMF solution. In the crystal structure two crystallographically independent Ba2+ cations are linked by two crystallographically distinct tfBDC2− anions to form a three-dimensional network structure. The coordination spheres of the first (CN = 8) and second (CN = 8) independent Ba cations are completed by the O atoms of DMF and EtOH mol­ecules, with both EtOH molecules being disordered over two sets of sites (occupancy ratio 0.7:0.3 and 0.6:0.4, respectively).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Despite the high inter­est in coordination polymers with tetra­fluoro­terephthalate (tfBDC2−) as a bridging ligand, only few alkaline earth metal tetra­fluoro­terephthalates have been reported up to now. Only in 2014, three calcium-based tetra­fluoro­terephthalates were published, one of them crystallizing in the chiral space group P41212 (Chen et al., 2014[Chen, S.-C., Tian, F., Huang, K.-L., Li, C.-P., Zhong, J., He, M.-Y., Zhang, Z.-H., Wang, H.-N., Du, M. & Chen, Q. (2014). CrystEngComm, 16, 7673-7680.]). Inter­esting pyrotechnical effects have been observed in several alkali and alkaline earth metal tetra­fluoro­terephthalates, and some of their crystal structures were examined (Blair et al., 2015[Blair, L. H., Colakel, A., Vrcelj, R. M., Sinclair, I. & Coles, S. J. (2015). Chem. Commun. 51, 12185-12188.]). Ca(tfBDC)·4H2O and Sr(tfBDC)·4H2O were synthesized mechanochemically and their crystal structures were solved and refined from X-ray powder diffraction data (Al-Terkawi et al., 2016[Al-Terkawi, A.-A., Scholz, G., Emmerling, F. & Kemnitz, E. (2016). Cryst. Growth Des. 16, 1923-1933.]). Here we report the first barium-containing coordination polymer with tfBDC2− as bridging ligand.

The asymmetric unit of [Ba(tfBDC)(DMF)(EtOH)] contains two crystallographically independent Ba2+ cations, two symmetry-independent tfBDC2− anions, two dimethylformamide (DMF) and two ethanol (EtOH) molecules. Each Ba2+ cation forms a BaO8 polyhedron with six oxygen atoms stemming from five different tfBDC2− ligands (Figs. 1[link] and 2[link]). The coordination spheres are completed by one DMF and one EtOH mol­ecule for each polyhedron [Ba1—O = 2.677 (4)-2.886 (3) Å; Ba2—O = 2.603 (17)-2.867 (3) Å]. The two independent EtOH mol­ecules are each disordered over two sets of sites, and only one of the two positions is shown in the figures. The observed Ba—O distances are in good agreement with those in comparable Ba2+ coordination polymers (Blair et al., 2015[Blair, L. H., Colakel, A., Vrcelj, R. M., Sinclair, I. & Coles, S. J. (2015). Chem. Commun. 51, 12185-12188.]; Lo et al., 1998[Lo, S. M. F., Chui, S. S. Y. & Williams, I. D. (1998). Acta Cryst. C54, 1846-1848.]).

[Figure 1]
Figure 1
ORTEP plot of the coordination sphere around Ba1, drawn with displacement parameters at the 50% probability level. The BaO8 polyhedron is highlighted in dark blue. Only one position of the disordered EtOH mol­ecule is shown. Colour code: Ba (silver), O (red), N (dark blue), F (green), C (dark grey), H (white). [Symmetry code: (i) −x + 1, y + [{1\over 2}], −z + [{3\over 2}].]
[Figure 2]
Figure 2
ORTEP plot of the coordination sphere around Ba2, drawn with displacement parameters at the 50% probability level. The BaO8 polyhedron is highlighted in light blue. Only one position of the disordered EtOH mol­ecule is shown. Colour code: see Fig. 1[link]. [Symmetry codes: (i) −x + 1, y + [{1\over 2}], −z + [{3\over 2}]; (iii) x, −y + [{3\over 2}], z − [{1\over 2}]; (iv) x, y + 1, z; (v) −x, −y + 1, −z + 1; (vi) −x, y + [{1\over 2}], −z + [{1\over 2}]; (viii) −x + 1, −y + 1, −z + 1.]

The BaO8 polyhedra are connected via common edges to form zigzag chains along [010]. These chains are shown in Fig. 3[link]. Each chain contains only Ba1 or Ba2, respectively, as highlighted in Fig. 3[link]. The Ba1—O and Ba2—O chains are very similar, but have a different orientation, as shown in Fig. 4[link]. The arrangement of the Ba—O chains resembles the motif of a hexa­gonal rod packing. The tfBDC2− ligands inter­connect these chains in the (010) plane so that a three-dimensional network structure is formed. The shortest Ba—Ba separations within the chains are Ba1—Ba1 = 4.5122 (3) Å and Ba2—Ba2 = 4.4999 (3) Å. The distances between Ba2+ cations of different chains exceed 9.5 Å.

[Figure 3]
Figure 3
View along [001] highlighting the zigzag chains of connected BaO8 polyhedra extending in the [010] direction. Only tfbdc2− ligands are shown and given in a wires/sticks representation. Colour code: see Fig. 1[link].
[Figure 4]
Figure 4
View along [010] in direction of the Ba–O zigzag chains. tfbdc2− ligands are shown in a wires/sticks representation, EtOH and DMF as ball and sticks. Colour code: see Fig. 1[link].

Each tfBDC2− linker coordinates to five Ba2+ cations. One carboxyl­ate group of each tfBDC2− linker (O19—C18—O18 and O1—C1—O2) bridges two Ba2+ cations in a monodentate fashion, whereas the other carboxyl­ate groups (O11—C11—O12 and O9—C9—O10) bridge three Ba2+ cations in a bis-monodentate and chelating fashion. As found in many other tetra­fluoro­terephthalates, the tfBDC2− linker is not planar, with the carboxyl­ate groups twisted out of the plane of the benzene rings (Seidel et al., 2011[Seidel, C., Ahlers, R. & Ruschewitz, U. (2011). Cryst. Growth Des. 11, 5053-5063.]). The respective torsion angles are 51.3 (3)° / 64.4 (2)° for linker I (C1–C9) and 35.4 (2)° / 48.8 (2)° for linker II (C11–C18). Both ethanol mol­ecules are involved in hydrogen bonds, as indicated by the short O⋯O distances: O50⋯O1 = 2.68 (1) Å, O40′⋯O30 = 2.55 (3) Å, O40⋯O19 = 2.759 (8) Å. Since these hydrogen bonds only connect ethanol mol­ecules to other oxygen atoms within the same BaO8 coordination polyhedron, the three-dimensional network structure of [Ba(tfBDC)(DMF)(EtOH)] is entirely held together by coordinating bonds.

Synthesis and crystallization

In a snap-cap tube 61.4 mg (0.15 mmol, 1 eq.) BaI2·H2O and 35.6 mg (0.15 mmol, 1 eq.) H2tfBDC (tetra­fluoro­terephthalic acid) were dissolved in 1.1 ml of a mixture of EtOH/DMF (3:1, v/v). The tube was closed with a cap and the latter was perforated once. This tube was then placed in a bigger one, which contained the same solvent mixture and an additional amount of 1.25 ml tri­ethyl­amine. The bigger tube was closed with a non-perforated cap. After three weeks, rod-shaped colourless crystals were obtained, which are very sensitive, obviously due to an easy loss of solvent mol­ecules. Therefore a single-crystal was isolated in perfluorinated oil for the diffraction experiment and cooled down to 170 K immediately.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. The two crystallographically independent ethanol mol­ecules are disordered and were refined using a split model with restraints and occupancies of 70:30 (O40/C40/C41/O40′/C40′/C41′) and 60:40 (C50/C51/C50′/C51′), respectively. The displacement parameters of the disordered atoms were refined isotropically and their bond lengths were set to ideal values by using the restraint command DFIX. The hydroxy H atoms of the disordered ethanol molecules could not be located in the final difference Fourier maps and were thus omitted in the final refinement.

Table 1
Experimental details

Crystal data
Chemical formula [Ba(C8F4O4)(C3H7NO)(C2H6O)]
Mr 492.58
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 21.4745 (8), 7.4295 (2), 26.1730 (11)
β (°) 127.366 (2)
V3) 3318.8 (2)
Z 8
Radiation type Mo Kα
μ (mm−1) 2.47
Crystal size (mm) 0.35 × 0.2 × 0.1
 
Data collection
Diffractometer STOE IPDS 2T
Absorption correction Numerical (X-RED-32 and X-SHAPE; Stoe & Cie, 2002)
Tmin, Tmax 0.589, 0.808
No. of measured, independent and observed [I > 2σ(I)] reflections 39756, 7048, 5576
Rint 0.075
(sin θ/λ)max−1) 0.634
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.099, 1.04
No. of reflections 7048
No. of parameters 436
No. of restraints 10
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.82, −1.18
Computer programs: X-AREA (Stoe, 2002[Stoe (2002). X-AREA, X-RED32, X-SHAPE. Stoe & Cie, Darmstadt, Germany.]), SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]), SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: X-AREA (Stoe, 2002); cell refinement: X-AREA (Stoe, 2002); data reduction: X-AREA (Stoe, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Poly[(dimethylformamide-1κO)(ethanol-1κO)(µ5-2,3,5,6-tetrafluorobenzenedicarboxylato-1:2κ2O1;1:3κ2O1';4κO4;5κO4')barium(II)] top
Crystal data top
[Ba(C8F4O4)(C3H7NO)(C2H6O)]F(000) = 1896
Mr = 492.58Dx = 1.968 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 21.4745 (8) ÅCell parameters from 19777 reflections
b = 7.4295 (2) Åθ = 2.0–26.8°
c = 26.1730 (11) ŵ = 2.47 mm1
β = 127.366 (2)°T = 293 K
V = 3318.8 (2) Å3Rod, colourless
Z = 80.35 × 0.2 × 0.1 mm
Data collection top
STOE IPDS 2T
diffractometer
5576 reflections with I > 2σ(I)
φ and ω scansRint = 0.075
Absorption correction: numerical
(XRED-32 and XSHAPE; Stoe & Cie, 2002)
θmax = 26.8°, θmin = 2.0°
Tmin = 0.589, Tmax = 0.808h = 2727
39756 measured reflectionsk = 99
7048 independent reflectionsl = 3333
Refinement top
Refinement on F210 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0579P)2 + 2.4924P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
7048 reflectionsΔρmax = 1.82 e Å3
436 parametersΔρmin = 1.18 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ba10.54553 (2)0.20736 (4)0.73378 (2)0.02214 (9)
Ba20.04870 (2)0.97090 (4)0.31093 (2)0.02406 (9)
F30.35904 (18)0.4686 (6)0.51315 (16)0.0507 (10)
F40.23839 (19)0.4857 (5)0.38998 (15)0.0469 (9)
F60.06587 (17)0.4292 (5)0.44316 (15)0.0426 (8)
F70.18585 (18)0.4252 (5)0.56698 (15)0.0433 (8)
F130.27083 (19)0.1178 (5)0.65661 (16)0.0445 (8)
F140.14422 (18)0.1505 (6)0.64894 (17)0.0505 (9)
F160.2977 (2)0.3578 (6)0.86381 (18)0.0506 (9)
F170.42256 (19)0.3398 (5)0.86864 (17)0.0475 (9)
O10.4015 (2)0.3431 (6)0.63339 (17)0.0402 (9)
O20.6559 (2)0.0624 (6)0.85008 (19)0.0424 (9)
O90.0705 (2)0.6121 (5)0.31403 (17)0.0341 (8)
O100.0356 (2)0.3338 (5)0.31744 (16)0.0291 (7)
O110.53018 (19)0.1568 (5)0.71318 (17)0.0265 (7)
O120.4348 (2)0.0661 (5)0.7489 (2)0.0338 (8)
O180.1380 (3)0.3946 (6)0.7816 (3)0.0572 (12)
O190.0914 (2)0.1469 (6)0.7214 (2)0.0476 (10)
O200.6787 (2)0.2181 (6)0.7461 (2)0.0463 (10)
O300.1902 (5)0.9587 (10)0.4261 (4)0.095 (2)*
O500.5090 (3)0.2685 (8)0.6153 (3)0.0698 (14)*
N200.8055 (3)0.2099 (7)0.7848 (3)0.0401 (11)
N300.3132 (3)0.9290 (8)0.5129 (3)0.0528 (14)
C10.3478 (3)0.4508 (7)0.6164 (2)0.0316 (11)
C20.2774 (3)0.4472 (7)0.5454 (2)0.0273 (10)
C30.2869 (3)0.4590 (8)0.4973 (2)0.0325 (11)
C40.2242 (3)0.4672 (7)0.4335 (2)0.0300 (11)
C50.1482 (3)0.4571 (6)0.4125 (2)0.0253 (10)
C60.1387 (3)0.4392 (7)0.4600 (2)0.0289 (10)
C70.2010 (3)0.4382 (7)0.5242 (2)0.0286 (10)
C90.0792 (3)0.4689 (6)0.3426 (2)0.0249 (10)
C110.4248 (3)0.2118 (6)0.7664 (2)0.0256 (10)
C120.3519 (3)0.2282 (6)0.7632 (3)0.0269 (10)
C130.2790 (3)0.1794 (7)0.7083 (3)0.0309 (11)
C140.2127 (3)0.1936 (7)0.7053 (3)0.0345 (12)
C150.2145 (3)0.2545 (7)0.7562 (3)0.0334 (12)
C160.2878 (3)0.3020 (7)0.8108 (3)0.0330 (12)
C170.3543 (3)0.2916 (7)0.8135 (3)0.0322 (11)
C180.1413 (3)0.2670 (8)0.7535 (3)0.0363 (12)
C200.7486 (3)0.1856 (8)0.7900 (3)0.0405 (13)
H200.76170.14160.82870.049*
C210.8862 (4)0.1656 (11)0.8383 (4)0.062 (2)
H21A0.91970.19130.82640.093*
H21B0.88970.04010.84840.093*
H21C0.90220.23630.87510.093*
C220.7904 (4)0.2747 (9)0.7264 (3)0.0477 (15)
H22A0.83890.28340.73210.072*
H22B0.76630.39130.71610.072*
H22C0.75600.19260.69200.072*
C300.2595 (5)0.9333 (13)0.4528 (4)0.074 (2)
H300.27450.91520.42660.089*
C310.2971 (7)0.9511 (12)0.5589 (5)0.087 (3)
H31A0.34530.94460.60170.131*
H31B0.26250.85740.55290.131*
H31C0.27301.06610.55260.131*
C320.3949 (6)0.898 (2)0.5417 (7)0.147 (6)
H32A0.42520.90090.58770.220*
H32B0.41320.98960.52790.220*
H32C0.40050.78200.52860.220*
O400.0241 (5)0.9520 (11)0.4043 (4)0.069 (2)*0.7
C400.0647 (8)1.0064 (15)0.4708 (5)0.077 (3)*0.7
H40A0.03531.09450.47570.092*0.7
H40B0.11701.05150.48990.092*0.7
C410.0660 (10)0.8223 (17)0.4973 (8)0.087 (4)*0.7
H41A0.09180.83190.54260.131*0.7
H41B0.09390.73840.49000.131*0.7
H41C0.01330.78090.47600.131*0.7
C50'0.5375 (7)0.2571 (14)0.5775 (6)0.058 (3)*0.6
H50A0.49510.23110.53280.069*0.6
H50B0.57740.16490.59410.069*0.6
C51'0.5713 (8)0.4427 (15)0.5848 (7)0.072 (4)*0.6
H51A0.59190.44850.56090.107*0.6
H51B0.61260.46560.62940.107*0.6
H51C0.53090.53140.56870.107*0.6
O40'0.0662 (12)0.969 (2)0.4185 (9)0.062 (5)*0.3
C40'0.0422 (14)0.844 (4)0.4449 (9)0.076 (8)*0.3
H40C0.04000.72310.43000.091*0.3
H40D0.00920.87560.43240.091*0.3
C41'0.1047 (13)0.856 (3)0.5193 (9)0.044 (5)*0.3
H41D0.09120.77360.53950.067*0.3
H41E0.10610.97620.53330.067*0.3
H41F0.15520.82500.53090.067*0.3
C500.5493 (10)0.375 (2)0.5953 (8)0.057 (4)*0.4
H50C0.60430.39170.63080.068*0.4
H50D0.52480.49150.57850.068*0.4
C510.5390 (18)0.256 (4)0.5426 (12)0.113 (9)*0.4
H51D0.56290.31410.52560.170*0.4
H51E0.48420.23890.50880.170*0.4
H51F0.56350.14170.56050.170*0.4
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba10.01810 (14)0.02236 (14)0.02548 (15)0.00131 (10)0.01298 (12)0.00198 (11)
Ba20.01982 (15)0.02342 (15)0.02311 (15)0.00225 (10)0.01000 (12)0.00058 (11)
F30.0188 (15)0.093 (3)0.0347 (17)0.0036 (16)0.0132 (14)0.0115 (18)
F40.0343 (18)0.079 (3)0.0306 (16)0.0061 (17)0.0214 (15)0.0093 (17)
F60.0188 (15)0.071 (2)0.0307 (16)0.0013 (15)0.0113 (13)0.0017 (16)
F70.0295 (16)0.072 (2)0.0278 (15)0.0013 (16)0.0172 (14)0.0036 (16)
F130.0337 (17)0.061 (2)0.0418 (18)0.0033 (16)0.0247 (15)0.0107 (17)
F140.0227 (16)0.079 (3)0.0448 (19)0.0064 (16)0.0177 (15)0.0097 (19)
F160.045 (2)0.069 (2)0.055 (2)0.0086 (18)0.0383 (18)0.0189 (19)
F170.0314 (17)0.067 (2)0.0470 (19)0.0147 (16)0.0251 (16)0.0211 (18)
O10.0225 (19)0.057 (3)0.0282 (19)0.0068 (18)0.0089 (16)0.0045 (18)
O20.034 (2)0.048 (2)0.032 (2)0.0015 (18)0.0134 (18)0.0079 (18)
O90.0319 (19)0.0285 (19)0.0265 (18)0.0031 (15)0.0096 (16)0.0035 (15)
O100.0300 (19)0.0248 (17)0.0262 (17)0.0022 (14)0.0138 (16)0.0028 (14)
O110.0247 (17)0.0253 (17)0.0345 (18)0.0024 (14)0.0206 (16)0.0007 (15)
O120.0314 (19)0.0242 (17)0.056 (2)0.0022 (15)0.0316 (19)0.0009 (17)
O180.054 (3)0.048 (3)0.102 (4)0.004 (2)0.064 (3)0.002 (3)
O190.031 (2)0.060 (3)0.057 (3)0.006 (2)0.029 (2)0.001 (2)
O200.031 (2)0.053 (3)0.059 (3)0.0053 (19)0.029 (2)0.009 (2)
N200.028 (2)0.040 (3)0.053 (3)0.002 (2)0.025 (2)0.006 (2)
N300.032 (3)0.058 (3)0.037 (3)0.005 (2)0.004 (2)0.003 (3)
C10.023 (3)0.039 (3)0.024 (2)0.002 (2)0.010 (2)0.000 (2)
C20.025 (3)0.028 (3)0.025 (2)0.000 (2)0.013 (2)0.001 (2)
C30.018 (2)0.044 (3)0.027 (2)0.001 (2)0.009 (2)0.003 (2)
C40.025 (3)0.040 (3)0.024 (2)0.002 (2)0.013 (2)0.002 (2)
C50.023 (2)0.023 (2)0.019 (2)0.0008 (19)0.007 (2)0.0013 (18)
C60.020 (2)0.033 (3)0.026 (2)0.002 (2)0.010 (2)0.001 (2)
C70.024 (2)0.037 (3)0.020 (2)0.003 (2)0.011 (2)0.002 (2)
C90.022 (2)0.025 (2)0.023 (2)0.0013 (19)0.012 (2)0.002 (2)
C110.022 (2)0.026 (2)0.033 (3)0.0037 (19)0.019 (2)0.005 (2)
C120.026 (2)0.023 (2)0.041 (3)0.0009 (19)0.025 (2)0.000 (2)
C130.032 (3)0.030 (3)0.040 (3)0.000 (2)0.027 (2)0.001 (2)
C140.022 (3)0.036 (3)0.043 (3)0.002 (2)0.018 (2)0.001 (2)
C150.029 (3)0.028 (3)0.052 (3)0.000 (2)0.029 (3)0.004 (2)
C160.034 (3)0.033 (3)0.045 (3)0.004 (2)0.030 (3)0.007 (2)
C170.027 (3)0.033 (3)0.038 (3)0.003 (2)0.020 (2)0.005 (2)
C180.031 (3)0.035 (3)0.053 (3)0.005 (2)0.031 (3)0.010 (3)
C200.031 (3)0.039 (3)0.049 (3)0.000 (2)0.022 (3)0.000 (3)
C210.025 (3)0.076 (5)0.068 (5)0.000 (3)0.020 (3)0.024 (4)
C220.045 (4)0.041 (3)0.072 (4)0.003 (3)0.044 (4)0.002 (3)
C300.053 (5)0.082 (6)0.064 (5)0.011 (4)0.023 (4)0.007 (4)
C310.123 (8)0.058 (5)0.073 (6)0.012 (5)0.056 (6)0.001 (4)
C320.043 (6)0.158 (13)0.173 (13)0.012 (7)0.031 (7)0.037 (11)
Geometric parameters (Å, º) top
Ba1—O202.677 (4)C2—C71.378 (7)
Ba1—O12i2.694 (4)C2—C31.394 (7)
Ba1—O22.699 (4)C3—C41.371 (7)
Ba1—O502.737 (5)C4—C51.373 (7)
Ba1—O112.739 (3)C5—C61.385 (7)
Ba1—O12.761 (4)C5—C91.503 (6)
Ba1—O122.837 (3)C6—C71.372 (7)
Ba1—O11i2.886 (3)C9—Ba2vii3.209 (5)
Ba1—C113.183 (4)C11—O11i1.243 (6)
Ba1—Ba1ii4.5122 (3)C11—C121.522 (6)
Ba1—Ba1i4.5122 (3)C12—C171.369 (7)
Ba2—O40'2.603 (17)C12—C131.385 (8)
Ba2—O18iii2.654 (4)C13—C141.381 (7)
Ba2—O302.685 (8)C14—C151.385 (8)
Ba2—O92.699 (4)C15—C161.384 (8)
Ba2—O10iv2.727 (4)C15—C181.532 (7)
Ba2—O19v2.728 (4)C16—C171.387 (7)
Ba2—O402.799 (8)C20—H200.9300
Ba2—O9vi2.862 (4)C21—H21A0.9600
Ba2—O10vi2.867 (3)C21—H21B0.9600
Ba2—C9vi3.209 (5)C21—H21C0.9600
Ba2—Ba2vi4.4999 (3)C22—H22A0.9600
Ba2—Ba2vii4.4999 (3)C22—H22B0.9600
F3—C31.340 (6)C22—H22C0.9600
F4—C41.352 (6)C30—H300.9300
F6—C61.345 (6)C31—H31A0.9600
F7—C71.346 (6)C31—H31B0.9600
F13—C131.335 (6)C31—H31C0.9600
F14—C141.345 (6)C32—H32A0.9600
F16—C161.336 (6)C32—H32B0.9600
F17—C171.339 (6)C32—H32C0.9600
O1—C11.243 (6)O40—C401.454 (9)
O2—C1ii1.246 (7)C40—C411.526 (9)
O9—C91.248 (6)C40—H40A0.9700
O9—Ba2vii2.862 (4)C40—H40B0.9700
O10—C91.252 (6)C41—H41A0.9600
O10—Ba2viii2.727 (3)C41—H41B0.9600
O10—Ba2vii2.867 (3)C41—H41C0.9600
O11—C11ii1.243 (6)C50'—C51'1.516 (9)
O11—Ba1ii2.886 (3)C50'—H50A0.9700
O12—C111.244 (6)C50'—H50B0.9700
O12—Ba1ii2.694 (4)C51'—H51A0.9600
O18—C181.230 (7)C51'—H51B0.9600
O18—Ba2ix2.654 (4)C51'—H51C0.9600
O19—C181.248 (7)O40'—C40'1.430 (10)
O19—Ba2v2.728 (4)C40'—C41'1.558 (10)
O20—C201.240 (7)C40'—H40C0.9700
O30—C301.214 (10)C40'—H40D0.9700
O50—C50'1.447 (8)C41'—H41D0.9600
O50—C501.481 (9)C41'—H41E0.9600
N20—C201.320 (7)C41'—H41F0.9600
N20—C221.441 (8)C50—C511.535 (10)
N20—C211.458 (8)C50—H50C0.9700
N30—C301.267 (10)C50—H50D0.9700
N30—C321.448 (11)C51—H51D0.9600
N30—C311.448 (11)C51—H51E0.9600
C1—O2i1.246 (7)C51—H51F0.9600
C1—C21.526 (7)
O20—Ba1—O12i84.46 (12)C20—N20—C22121.9 (5)
O20—Ba1—O274.51 (13)C20—N20—C21120.4 (6)
O12i—Ba1—O2105.31 (13)C22—N20—C21117.7 (5)
O20—Ba1—O5071.47 (15)C30—N30—C32123.6 (9)
O12i—Ba1—O5086.25 (15)C30—N30—C31122.2 (8)
O2—Ba1—O50142.71 (15)C32—N30—C31114.2 (9)
O20—Ba1—O1192.61 (12)O1—C1—O2i128.2 (5)
O12i—Ba1—O11176.68 (10)O1—C1—C2116.3 (5)
O2—Ba1—O1175.31 (12)O2i—C1—C2115.5 (5)
O50—Ba1—O1191.34 (14)C7—C2—C3115.5 (4)
O20—Ba1—O1126.98 (13)C7—C2—C1123.2 (4)
O12i—Ba1—O176.67 (12)C3—C2—C1121.2 (4)
O2—Ba1—O1158.26 (12)F3—C3—C4118.1 (5)
O50—Ba1—O158.39 (14)F3—C3—C2119.9 (4)
O11—Ba1—O1104.00 (12)C4—C3—C2122.0 (5)
O20—Ba1—O12156.67 (12)F4—C4—C3118.4 (4)
O12i—Ba1—O12113.66 (8)F4—C4—C5119.3 (4)
O2—Ba1—O1286.11 (12)C3—C4—C5122.4 (5)
O50—Ba1—O12122.10 (14)C4—C5—C6115.7 (4)
O11—Ba1—O1269.58 (10)C4—C5—C9122.6 (4)
O1—Ba1—O1273.64 (12)C6—C5—C9121.6 (4)
O20—Ba1—O11i143.49 (12)F6—C6—C7118.5 (4)
O12i—Ba1—O11i69.47 (10)F6—C6—C5119.1 (4)
O2—Ba1—O11i87.86 (11)C7—C6—C5122.3 (5)
O50—Ba1—O11i129.03 (14)F7—C7—C6118.0 (4)
O11—Ba1—O11i113.85 (8)F7—C7—C2119.9 (4)
O1—Ba1—O11i72.39 (11)C6—C7—C2122.1 (5)
O12—Ba1—O11i45.42 (10)O9—C9—O10125.2 (4)
O20—Ba1—C11162.04 (14)O9—C9—C5117.2 (4)
O12i—Ba1—C1190.82 (11)O10—C9—C5117.6 (4)
O2—Ba1—C1190.16 (12)O9—C9—Ba2vii62.8 (2)
O50—Ba1—C11125.61 (15)O10—C9—Ba2vii63.0 (2)
O11—Ba1—C1192.45 (11)C5—C9—Ba2vii170.6 (3)
O1—Ba1—C1168.11 (12)O11i—C11—O12125.4 (4)
O12—Ba1—C1122.93 (11)O11i—C11—C12117.8 (4)
O11i—Ba1—C1122.97 (11)O12—C11—C12116.8 (4)
O20—Ba1—Ba1ii123.72 (10)O11i—C11—Ba165.0 (2)
O12i—Ba1—Ba1ii145.52 (7)O12—C11—Ba162.7 (2)
O2—Ba1—Ba1ii69.13 (9)C12—C11—Ba1164.7 (3)
O50—Ba1—Ba1ii119.42 (12)C17—C12—C13116.5 (4)
O11—Ba1—Ba1ii37.79 (6)C17—C12—C11122.6 (5)
O1—Ba1—Ba1ii96.70 (9)C13—C12—C11120.9 (4)
O12—Ba1—Ba1ii34.29 (7)F13—C13—C14118.2 (5)
O11i—Ba1—Ba1ii76.25 (7)F13—C13—C12120.8 (4)
C11—Ba1—Ba1ii56.06 (9)C14—C13—C12121.1 (5)
O20—Ba1—Ba1i120.38 (10)F14—C14—C13116.5 (5)
O12i—Ba1—Ba1i36.40 (7)F14—C14—C15120.4 (5)
O2—Ba1—Ba1i107.49 (9)C13—C14—C15123.0 (5)
O50—Ba1—Ba1i102.58 (12)C16—C15—C14115.2 (5)
O11—Ba1—Ba1i146.72 (6)C16—C15—C18121.6 (5)
O1—Ba1—Ba1i61.01 (9)C14—C15—C18123.1 (5)
O12—Ba1—Ba1i77.45 (7)F16—C16—C15121.0 (4)
O11i—Ba1—Ba1i35.57 (7)F16—C16—C17117.0 (5)
C11—Ba1—Ba1i54.87 (9)C15—C16—C17122.0 (5)
Ba1ii—Ba1—Ba1i110.827 (11)F17—C17—C12120.4 (4)
O40'—Ba2—O18iii131.2 (5)F17—C17—C16117.4 (5)
O40'—Ba2—O3057.6 (5)C12—C17—C16122.2 (5)
O18iii—Ba2—O3079.2 (2)O18—C18—O19128.0 (5)
O40'—Ba2—O993.1 (4)O18—C18—C15116.8 (5)
O18iii—Ba2—O9103.75 (13)O19—C18—C15115.2 (5)
O30—Ba2—O982.84 (17)O20—C20—N20123.6 (6)
O40'—Ba2—O10iv83.7 (4)O20—C20—H20118.2
O18iii—Ba2—O10iv76.45 (12)N20—C20—H20118.2
O30—Ba2—O10iv93.01 (17)N20—C21—H21A109.5
O9—Ba2—O10iv175.70 (10)N20—C21—H21B109.5
O40'—Ba2—O19v75.1 (5)H21A—C21—H21B109.5
O18iii—Ba2—O19v152.23 (16)N20—C21—H21C109.5
O30—Ba2—O19v128.43 (18)H21A—C21—H21C109.5
O9—Ba2—O19v80.29 (13)H21B—C21—H21C109.5
O10iv—Ba2—O19v101.56 (12)N20—C22—H22A109.5
O18iii—Ba2—O40145.4 (2)N20—C22—H22B109.5
O30—Ba2—O4072.7 (2)H22A—C22—H22B109.5
O9—Ba2—O4092.61 (19)N20—C22—H22C109.5
O10iv—Ba2—O4085.06 (19)H22A—C22—H22C109.5
O19v—Ba2—O4059.9 (2)H22B—C22—H22C109.5
O40'—Ba2—O9vi132.8 (4)O30—C30—N30126.4 (10)
O18iii—Ba2—O9vi80.44 (14)O30—C30—H30116.8
O30—Ba2—O9vi155.96 (17)N30—C30—H30116.8
O9—Ba2—O9vi114.53 (9)N30—C31—H31A109.5
O10iv—Ba2—O9vi69.77 (10)N30—C31—H31B109.5
O19v—Ba2—O9vi73.11 (12)H31A—C31—H31B109.5
O40—Ba2—O9vi120.3 (2)N30—C31—H31C109.5
O40'—Ba2—O10vi147.1 (4)H31A—C31—H31C109.5
O18iii—Ba2—O10vi81.28 (14)H31B—C31—H31C109.5
O30—Ba2—O10vi141.53 (17)N30—C32—H32A109.5
O9—Ba2—O10vi70.06 (10)N30—C32—H32B109.5
O10iv—Ba2—O10vi114.13 (8)H32A—C32—H32B109.5
O19v—Ba2—O10vi74.28 (12)N30—C32—H32C109.5
O40—Ba2—O10vi133.3 (2)H32A—C32—H32C109.5
O9vi—Ba2—O10vi45.60 (10)H32B—C32—H32C109.5
O40'—Ba2—C9vi143.7 (5)C40—O40—Ba2137.5 (7)
O18iii—Ba2—C9vi81.90 (15)O40—C40—C4197.3 (9)
O30—Ba2—C9vi158.58 (18)O40—C40—H40A112.3
O9—Ba2—C9vi91.95 (11)C41—C40—H40A112.3
O10iv—Ba2—C9vi92.33 (11)O40—C40—H40B112.3
O19v—Ba2—C9vi70.44 (13)C41—C40—H40B112.3
O40—Ba2—C9vi128.4 (2)H40A—C40—H40B109.9
O9vi—Ba2—C9vi22.82 (11)C40—C41—H41A109.5
O10vi—Ba2—C9vi22.91 (11)C40—C41—H41B109.5
O40'—Ba2—Ba2vi118.1 (4)H41A—C41—H41B109.5
O18iii—Ba2—Ba2vi65.86 (11)C40—C41—H41C109.5
O30—Ba2—Ba2vi123.09 (16)H41A—C41—H41C109.5
O9—Ba2—Ba2vi146.52 (7)H41B—C41—H41C109.5
O10iv—Ba2—Ba2vi37.52 (7)O50—C50'—C51'103.3 (7)
O19v—Ba2—Ba2vi95.39 (10)O50—C50'—H50A111.1
O40—Ba2—Ba2vi114.04 (18)C51'—C50'—H50A111.1
O9vi—Ba2—Ba2vi34.78 (7)O50—C50'—H50B111.1
O10vi—Ba2—Ba2vi76.78 (7)C51'—C50'—H50B111.1
C9vi—Ba2—Ba2vi55.93 (9)H50A—C50'—H50B109.1
O40'—Ba2—Ba2vii117.5 (4)C50'—C51'—H51A109.5
O18iii—Ba2—Ba2vii102.27 (11)C50'—C51'—H51B109.5
O30—Ba2—Ba2vii119.36 (16)H51A—C51'—H51B109.5
O9—Ba2—Ba2vii37.21 (7)C50'—C51'—H51C109.5
O10iv—Ba2—Ba2vii147.07 (7)H51A—C51'—H51C109.5
O19v—Ba2—Ba2vii64.18 (10)H51B—C51'—H51C109.5
O40—Ba2—Ba2vii108.93 (18)C40'—O40'—Ba2132.0 (14)
O9vi—Ba2—Ba2vii77.53 (7)O40'—C40'—C41'106.2 (17)
O10vi—Ba2—Ba2vii35.40 (7)O40'—C40'—H40C110.5
C9vi—Ba2—Ba2vii55.40 (9)C41'—C40'—H40C110.5
Ba2vi—Ba2—Ba2vii111.282 (12)O40'—C40'—H40D110.5
C1—O1—Ba1146.7 (3)C41'—C40'—H40D110.5
C1ii—O2—Ba1132.2 (3)H40C—C40'—H40D108.7
C9—O9—Ba2145.1 (3)C40'—C41'—H41D109.5
C9—O9—Ba2vii94.4 (3)C40'—C41'—H41E109.5
Ba2—O9—Ba2vii108.01 (12)H41D—C41'—H41E109.5
C9—O10—Ba2viii138.8 (3)C40'—C41'—H41F109.5
C9—O10—Ba2vii94.0 (3)H41D—C41'—H41F109.5
Ba2viii—O10—Ba2vii107.08 (11)H41E—C41'—H41F109.5
C11ii—O11—Ba1136.2 (3)O50—C50—C51102.4 (8)
C11ii—O11—Ba1ii92.1 (3)O50—C50—H50C111.3
Ba1—O11—Ba1ii106.64 (10)C51—C50—H50C111.3
C11—O12—Ba1ii147.5 (3)O50—C50—H50D111.3
C11—O12—Ba194.4 (3)C51—C50—H50D111.3
Ba1ii—O12—Ba1109.31 (11)H50C—C50—H50D109.2
C18—O18—Ba2ix141.2 (4)C50—C51—H51D109.5
C18—O19—Ba2v140.7 (4)C50—C51—H51E109.5
C20—O20—Ba1135.2 (4)H51D—C51—H51E109.5
C30—O30—Ba2143.9 (7)C50—C51—H51F109.5
C50'—O50—Ba1144.7 (6)H51D—C51—H51F109.5
C50—O50—Ba1131.4 (7)H51E—C51—H51F109.5
Ba1—O1—C1—O2i2.1 (11)O12—C11—C12—C17131.3 (5)
Ba1—O1—C1—C2178.1 (4)Ba1—C11—C12—C17144.3 (11)
O1—C1—C2—C7130.7 (6)O11i—C11—C12—C13131.9 (5)
O2i—C1—C2—C749.5 (7)O12—C11—C12—C1349.0 (7)
O1—C1—C2—C351.4 (7)Ba1—C11—C12—C1335.5 (15)
O2i—C1—C2—C3128.4 (6)C17—C12—C13—F13179.4 (5)
C7—C2—C3—F3179.9 (5)C11—C12—C13—F130.4 (8)
C1—C2—C3—F31.9 (8)C17—C12—C13—C140.4 (8)
C7—C2—C3—C42.2 (8)C11—C12—C13—C14179.8 (5)
C1—C2—C3—C4175.9 (5)F13—C13—C14—F142.7 (8)
F3—C3—C4—F40.4 (8)C12—C13—C14—F14177.1 (5)
C2—C3—C4—F4177.4 (5)F13—C13—C14—C15179.5 (5)
F3—C3—C4—C5179.5 (5)C12—C13—C14—C150.7 (8)
C2—C3—C4—C52.7 (9)F14—C14—C15—C16177.3 (5)
F4—C4—C5—C6179.7 (5)C13—C14—C15—C160.4 (8)
C3—C4—C5—C60.4 (8)F14—C14—C15—C183.5 (8)
F4—C4—C5—C91.0 (8)C13—C14—C15—C18178.8 (5)
C3—C4—C5—C9179.1 (5)C14—C15—C16—F16178.0 (5)
C4—C5—C6—F6179.7 (5)C18—C15—C16—F161.2 (8)
C9—C5—C6—F61.1 (7)C14—C15—C16—C171.0 (8)
C4—C5—C6—C72.3 (8)C18—C15—C16—C17179.8 (5)
C9—C5—C6—C7176.4 (5)C13—C12—C17—F17179.2 (5)
F6—C6—C7—F70.7 (8)C11—C12—C17—F171.0 (8)
C5—C6—C7—F7178.2 (5)C13—C12—C17—C161.8 (8)
F6—C6—C7—C2179.7 (5)C11—C12—C17—C16178.4 (5)
C5—C6—C7—C22.8 (9)F16—C16—C17—F170.6 (8)
C3—C2—C7—F7179.5 (5)C15—C16—C17—F17179.7 (5)
C1—C2—C7—F72.5 (8)F16—C16—C17—C12176.8 (5)
C3—C2—C7—C60.5 (8)C15—C16—C17—C122.2 (9)
C1—C2—C7—C6178.5 (5)Ba2ix—O18—C18—O195.6 (12)
Ba2—O9—C9—O10121.2 (5)Ba2ix—O18—C18—C15176.2 (4)
Ba2vii—O9—C9—O109.5 (5)Ba2v—O19—C18—O185.4 (11)
Ba2—O9—C9—C559.9 (7)Ba2v—O19—C18—C15176.4 (4)
Ba2vii—O9—C9—C5169.4 (4)C16—C15—C18—O1836.9 (8)
Ba2—O9—C9—Ba2vii130.7 (5)C14—C15—C18—O18143.9 (6)
Ba2viii—O10—C9—O9131.3 (4)C16—C15—C18—O19144.6 (6)
Ba2vii—O10—C9—O99.4 (5)C14—C15—C18—O1934.5 (8)
Ba2viii—O10—C9—C547.6 (7)Ba1—O20—C20—N20176.7 (4)
Ba2vii—O10—C9—C5169.4 (4)C22—N20—C20—O201.0 (9)
Ba2viii—O10—C9—Ba2vii121.9 (4)C21—N20—C20—O20179.0 (6)
C4—C5—C9—O962.6 (7)Ba2—O30—C30—N30175.7 (6)
C6—C5—C9—O9116.0 (5)C32—N30—C30—O30179.9 (11)
C4—C5—C9—O10116.4 (6)C31—N30—C30—O301.4 (15)
C6—C5—C9—O1065.1 (6)Ba2—O40—C40—C41125.3 (10)
Ba1ii—O12—C11—O11i119.3 (6)C50—O50—C50'—C51'0.8 (14)
Ba1—O12—C11—O11i18.1 (5)Ba1—O50—C50'—C51'93.6 (11)
Ba1ii—O12—C11—C1259.7 (8)Ba2—O40'—C40'—C41'149.4 (16)
Ba1—O12—C11—C12162.8 (4)C50'—O50—C50—C5111.1 (17)
Ba1ii—O12—C11—Ba1137.5 (6)Ba1—O50—C50—C51140.7 (14)
O11i—C11—C12—C1747.8 (7)
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y1/2, z+3/2; (iii) x, y+3/2, z1/2; (iv) x, y+1, z; (v) x, y+1, z+1; (vi) x, y+1/2, z+1/2; (vii) x, y1/2, z+1/2; (viii) x, y1, z; (ix) x, y+3/2, z+1/2.
 

Acknowledgements

We thank Dr Ingo Pantenburg and Silke Kremer for collecting single-crystal X-ray diffraction data as well as for many helpful discussions.

References

First citationAl-Terkawi, A.-A., Scholz, G., Emmerling, F. & Kemnitz, E. (2016). Cryst. Growth Des. 16, 1923–1933.  CAS Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBlair, L. H., Colakel, A., Vrcelj, R. M., Sinclair, I. & Coles, S. J. (2015). Chem. Commun. 51, 12185–12188.  CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChen, S.-C., Tian, F., Huang, K.-L., Li, C.-P., Zhong, J., He, M.-Y., Zhang, Z.-H., Wang, H.-N., Du, M. & Chen, Q. (2014). CrystEngComm, 16, 7673–7680.  CSD CrossRef CAS Google Scholar
First citationLo, S. M. F., Chui, S. S. Y. & Williams, I. D. (1998). Acta Cryst. C54, 1846–1848.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSeidel, C., Ahlers, R. & Ruschewitz, U. (2011). Cryst. Growth Des. 11, 5053–5063.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe (2002). X-AREA, X-RED32, X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds