organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4-Methyl­anilinium 3-carb­­oxy-2-hy­dr­oxy­propano­ate

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Presidency College, Chennai 600 005, India, bDepartment of physics, Aksheyaa College of Engineering, Kancheepuram 603 314, India, and cDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India
*Correspondence e-mail: mohan66@hotmail.com, chakkaravarthi_2005@yahoo.com

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 23 September 2016; accepted 28 September 2016; online 30 September 2016)

The title mol­ecular salt, C7H10N+·C4H5O5, contains a 4-methyl­anilinium cation and a 3-carb­oxy-2-hy­droxy­propano­ate (hydrogen 2-hy­droxy­succinate) anion in the asymmetric unit. The cation is protonated at the amine N atom and the anion is deprotonated at one of the hy­droxy O atoms of the carb­oxy­lic acid groups. An O—H⋯O hydrogen bond in the anion generates an S(5) graph-set motif. An N—H⋯O hydrogen bond links the anion and cation in the asymmetric unit. In the crystal, N—H⋯O and O—H⋯O hydrogen bonds link adjacent anions and cations, forming a two-dimensional network parallel to the ac plane and enclosing R23(12), R23(14) and R32(10) ring motifs.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Succinic acid derivatives are mostly used as food and pharmaceutical chemicals (Sauer et al., 2008[Sauer, M., Porro, D., Mattanovich, D. & Branduardi, P. (2008). Trends Biotechnol. 26, 100-108.]). We report the synthesis and the crystal structure of the title mol­ecular salt (Fig. 1[link]), which contains a 4-methyl­anilinium cation and 2-hy­droxy­succinate anion in the asymmetric unit. Geometrical parameters are comparable with those for the reported structures of 4-methyl­anilinium nitrate (Benali-Cherif et al., 2009[Benali-Cherif, N., Boussekine, H., Boutobba, Z. & Dadda, N. (2009). Acta Cryst. E65, o2744.]) and 2-hy­droxy­succinate salts (Fleck et al., 2001[Fleck, M., Tillmanns, E. & Bohaty, L. (2001). Z. Kristallogr. 216, 663-645.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title mol­ecular salt, showing the atom labelling and 30% probability displacement ellipsoids. The dashed line represents the intra­molecular hydrogen bond.

The cation is protonated at amine atom N1 and the anion is deprotonated at hy­droxy atom O2. An N1—H1A⋯O5 hydrogen bond links the anion and cation while an O5—H5A⋯O1 hydrogen bond generates an S(5) graph-set motif in the anion (Fig. 1[link] and Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O1 0.82 (1) 2.12 (3) 2.6101 (15) 119 (2)
N1—H1A⋯O5 0.87 (1) 1.98 (1) 2.8381 (18) 172 (2)
N1—H1B⋯O1i 0.87 (1) 1.88 (1) 2.7328 (18) 168 (2)
N1—H1C⋯O2ii 0.87 (1) 2.01 (1) 2.8736 (19) 170 (2)
O3—H3A⋯O2i 0.83 (1) 1.75 (1) 2.5830 (16) 179 (3)
O5—H5A⋯O4iii 0.82 (1) 2.26 (2) 2.8088 (18) 125 (2)
Symmetry codes: (i) x-1, y, z; (ii) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

In the crystal structure, N—H⋯O and O—H⋯O hydrogen bonds link adjacent anions and cations into infinite two-dimensional networks along the ac plane (Table 1[link] and Fig. 2[link]). The inter-ionic N1—H1B⋯O1i, N1—H1A⋯O5ii and O3—H3A⋯O2i hydrogen bonds generate an R23(12) ring motif, the N1—H1B⋯O1i, N1—H1C⋯O2ii and O5—H5A⋯O4i hydrogen bonds generate an R23(14) ring motif and the N1—H1A⋯O5, N1—H1C⋯O2ii, O5—H5A⋯O4iii and O3—H3A⋯O2i hydrogen bonds generate an R32(10) ring motif (Fig. 3[link]; for symmetry codes, see Table 1[link]).

[Figure 2]
Figure 2
The crystal packing of the title mol­ecular salt, viewed along the b axis. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.
[Figure 3]
Figure 3
A partial view of the crystal packing showing the ring motifs. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.

Synthesis and crystallization

The title compound was synthesized from the raw materials p-toluidine and DL-malic acid which were taken in 1:1 ratio and dissolved in water at ambient temperature. The aqueous solution was continuously stirred for six h to prepare a homogeneous solution. After a transparent solution was obtained, it was filtered and kept for slow evaporation. Crystals suitable for X-ray diffraction were obtained after a period of five weeks.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C7H10N+·C4H5O5
Mr 241.24
Crystal system, space group Monoclinic, P21/c
Temperature (K) 295
a, b, c (Å) 7.4849 (8), 16.1306 (16), 10.4904 (10)
β (°) 109.234 (3)
V3) 1195.9 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.26 × 0.22 × 0.20
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.686, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 19297, 3403, 2078
Rint 0.047
(sin θ/λ)max−1) 0.700
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.136, 1.03
No. of reflections 3403
No. of parameters 173
No. of restraints 5
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.37, −0.20
Computer programs: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2016 (Sheldrick, 2015) and PLATON (Spek, 2009).

4-Methylanilinium 3-carboxy-2-hydroxypropanoate top
Crystal data top
C7H10N+·C4H5O5F(000) = 512
Mr = 241.24Dx = 1.340 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.4849 (8) ÅCell parameters from 5534 reflections
b = 16.1306 (16) Åθ = 2.4–29.6°
c = 10.4904 (10) ŵ = 0.11 mm1
β = 109.234 (3)°T = 295 K
V = 1195.9 (2) Å3Block, colourless
Z = 40.26 × 0.22 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2078 reflections with I > 2σ(I)
ω and φ scanRint = 0.047
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
θmax = 29.9°, θmin = 2.4°
Tmin = 0.686, Tmax = 0.746h = 1010
19297 measured reflectionsk = 2222
3403 independent reflectionsl = 1414
Refinement top
Refinement on F25 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.136 w = 1/[σ2(Fo2) + (0.055P)2 + 0.3504P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3403 reflectionsΔρmax = 0.37 e Å3
173 parametersΔρmin = 0.20 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2423 (3)0.50050 (12)0.9996 (2)0.0447 (5)
C20.2804 (3)0.58051 (13)1.04649 (19)0.0498 (5)
H20.3225960.5901871.1390540.060*
C30.2574 (3)0.64649 (12)0.95917 (17)0.0436 (4)
H30.2843070.7000930.9926600.052*
C40.1946 (2)0.63270 (10)0.82288 (16)0.0297 (4)
C50.1539 (3)0.55398 (12)0.77248 (19)0.0463 (5)
H50.1104170.5446430.6798290.056*
C60.1787 (3)0.48874 (13)0.8621 (2)0.0544 (5)
H60.1514510.4352150.8283250.065*
C70.2706 (3)0.42870 (15)1.0955 (3)0.0683 (7)
H7A0.2678250.4481941.1812620.102*
H7B0.3907530.4031691.1068080.102*
H7C0.1714380.3888641.0596460.102*
C80.8664 (2)0.81546 (11)0.87375 (15)0.0300 (4)
C90.6854 (2)0.80756 (11)0.91036 (16)0.0329 (4)
H90.7117610.7708070.9887960.039*
C100.6193 (2)0.88973 (11)0.94679 (19)0.0372 (4)
H10A0.5915690.9273810.8706390.045*
H10B0.7177290.9142781.0221320.045*
C110.4433 (2)0.87581 (10)0.98457 (16)0.0307 (4)
N10.16966 (19)0.70315 (10)0.73151 (15)0.0324 (3)
O10.86759 (15)0.78284 (8)0.76746 (12)0.0398 (3)
O21.00180 (15)0.85307 (9)0.95801 (11)0.0443 (3)
O30.28940 (16)0.90265 (10)0.89417 (13)0.0509 (4)
O40.44432 (17)0.84089 (9)1.08584 (13)0.0495 (4)
O50.53901 (15)0.77145 (8)0.80248 (12)0.0405 (3)
H1A0.2777 (18)0.7287 (12)0.753 (2)0.052 (6)*
H1B0.080 (2)0.7348 (11)0.739 (2)0.050 (6)*
H1C0.131 (3)0.6877 (13)0.6475 (11)0.058 (6)*
H3A0.197 (3)0.8863 (16)0.915 (3)0.087*
H5A0.589 (3)0.7479 (16)0.754 (2)0.087*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0391 (10)0.0430 (11)0.0527 (12)0.0069 (8)0.0160 (8)0.0088 (9)
C20.0566 (12)0.0563 (13)0.0313 (9)0.0025 (10)0.0073 (8)0.0025 (9)
C30.0539 (11)0.0403 (11)0.0338 (9)0.0078 (8)0.0109 (8)0.0075 (8)
C40.0236 (7)0.0348 (9)0.0322 (8)0.0010 (6)0.0111 (6)0.0015 (7)
C50.0604 (12)0.0433 (11)0.0345 (9)0.0009 (9)0.0146 (8)0.0094 (8)
C60.0715 (14)0.0345 (11)0.0581 (13)0.0012 (10)0.0226 (11)0.0069 (9)
C70.0657 (14)0.0611 (15)0.0812 (17)0.0157 (12)0.0284 (13)0.0325 (13)
C80.0191 (7)0.0424 (10)0.0295 (8)0.0041 (6)0.0091 (6)0.0049 (7)
C90.0231 (7)0.0430 (10)0.0347 (8)0.0027 (7)0.0123 (6)0.0018 (7)
C100.0259 (8)0.0443 (10)0.0453 (10)0.0067 (7)0.0169 (7)0.0082 (8)
C110.0255 (7)0.0378 (9)0.0317 (8)0.0023 (6)0.0133 (6)0.0064 (7)
N10.0261 (7)0.0411 (9)0.0323 (8)0.0005 (6)0.0129 (6)0.0015 (6)
O10.0312 (6)0.0538 (8)0.0394 (7)0.0036 (5)0.0184 (5)0.0043 (6)
O20.0219 (5)0.0758 (10)0.0357 (7)0.0091 (6)0.0101 (5)0.0050 (6)
O30.0270 (6)0.0840 (11)0.0446 (7)0.0028 (6)0.0156 (5)0.0187 (7)
O40.0343 (7)0.0718 (10)0.0437 (7)0.0051 (6)0.0145 (5)0.0159 (7)
O50.0247 (6)0.0522 (8)0.0472 (7)0.0080 (5)0.0152 (5)0.0180 (6)
Geometric parameters (Å, º) top
C1—C61.375 (3)C8—O21.2596 (19)
C1—C21.377 (3)C8—C91.530 (2)
C1—C71.503 (3)C9—O51.4155 (19)
C2—C31.378 (3)C9—C101.508 (2)
C2—H20.9300C9—H90.9800
C3—C41.368 (2)C10—C111.512 (2)
C3—H30.9300C10—H10A0.9700
C4—C51.371 (3)C10—H10B0.9700
C4—N11.458 (2)C11—O41.200 (2)
C5—C61.382 (3)C11—O31.302 (2)
C5—H50.9300N1—H1A0.868 (9)
C6—H60.9300N1—H1B0.868 (9)
C7—H7A0.9600N1—H1C0.869 (9)
C7—H7B0.9600O3—H3A0.831 (10)
C7—H7C0.9600O5—H5A0.816 (10)
C8—O11.2357 (19)
C6—C1—C2117.62 (18)O1—C8—C9117.47 (14)
C6—C1—C7121.3 (2)O2—C8—C9116.00 (14)
C2—C1—C7121.06 (19)O5—C9—C10109.40 (13)
C1—C2—C3121.37 (18)O5—C9—C8110.47 (13)
C1—C2—H2119.3C10—C9—C8112.47 (14)
C3—C2—H2119.3O5—C9—H9108.1
C4—C3—C2119.60 (17)C10—C9—H9108.1
C4—C3—H3120.2C8—C9—H9108.1
C2—C3—H3120.2C9—C10—C11108.84 (14)
C3—C4—C5120.66 (17)C9—C10—H10A109.9
C3—C4—N1119.05 (15)C11—C10—H10A109.9
C5—C4—N1120.28 (15)C9—C10—H10B109.9
C4—C5—C6118.69 (17)C11—C10—H10B109.9
C4—C5—H5120.7H10A—C10—H10B108.3
C6—C5—H5120.7O4—C11—O3123.16 (14)
C1—C6—C5122.06 (19)O4—C11—C10123.35 (15)
C1—C6—H6119.0O3—C11—C10113.45 (15)
C5—C6—H6119.0C4—N1—H1A107.0 (14)
C1—C7—H7A109.5C4—N1—H1B109.3 (14)
C1—C7—H7B109.5H1A—N1—H1B112 (2)
H7A—C7—H7B109.5C4—N1—H1C111.8 (15)
C1—C7—H7C109.5H1A—N1—H1C111 (2)
H7A—C7—H7C109.5H1B—N1—H1C105.1 (19)
H7B—C7—H7C109.5C11—O3—H3A108.4 (19)
O1—C8—O2126.49 (14)C9—O5—H5A107 (2)
C6—C1—C2—C30.6 (3)C4—C5—C6—C10.1 (3)
C7—C1—C2—C3179.1 (2)O1—C8—C9—O57.5 (2)
C1—C2—C3—C40.3 (3)O2—C8—C9—O5174.38 (14)
C2—C3—C4—C50.2 (3)O1—C8—C9—C10130.05 (16)
C2—C3—C4—N1179.61 (17)O2—C8—C9—C1051.8 (2)
C3—C4—C5—C60.4 (3)O5—C9—C10—C1158.19 (18)
N1—C4—C5—C6179.80 (17)C8—C9—C10—C11178.66 (13)
C2—C1—C6—C50.3 (3)C9—C10—C11—O469.8 (2)
C7—C1—C6—C5179.3 (2)C9—C10—C11—O3107.77 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O10.82 (1)2.12 (3)2.6101 (15)119 (2)
N1—H1A···O50.87 (1)1.98 (1)2.8381 (18)172 (2)
N1—H1B···O1i0.87 (1)1.88 (1)2.7328 (18)168 (2)
N1—H1C···O2ii0.87 (1)2.01 (1)2.8736 (19)170 (2)
O3—H3A···O2i0.83 (1)1.75 (1)2.5830 (16)179 (3)
O5—H5A···O4iii0.82 (1)2.26 (2)2.8088 (18)125 (2)
Symmetry codes: (i) x1, y, z; (ii) x1, y+3/2, z1/2; (iii) x, y+3/2, z1/2.
 

Acknowledgements

The authors acknowledge the SAIF, IIT, Madras, for the data collection.

References

First citationBenali-Cherif, N., Boussekine, H., Boutobba, Z. & Dadda, N. (2009). Acta Cryst. E65, o2744.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFleck, M., Tillmanns, E. & Bohaty, L. (2001). Z. Kristallogr. 216, 663–645.  Google Scholar
First citationSauer, M., Porro, D., Mattanovich, D. & Branduardi, P. (2008). Trends Biotechnol. 26, 100–108.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds