organic compounds
4,7-Dichloro-1H-indole-2,3-dione
aDepartment of Chemistry and Biochemistry, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA
*Correspondence e-mail: dmanke@umassd.edu
The title compound, C8H3Cl2NO2, has a single near-planar molecule in the with the non-H atoms having a mean deviation from planarity of 0.042 Å. In the crystal, the molecules dimerize through two N—H⋯O hydrogen bonds. The molecules are further linked through slipped π–π interactions that propagate along the a axis [inter-centroid distance = 3.8639 (10) Å, interplanar distance = 3.3478 (10) Å and slippage = 1.9292 (15) Å].
Keywords: crystal structure; isatin; hydrogen bonding.
CCDC reference: 1505439
Structure description
Herein we report the ). There is a single molecule in the that has a mean deviation from planarity of only 0.042 Å for the non-H atoms. The bond lengths and angles of the 1H-indole-2,3-dione core are similar to those observed in the parent isatin (Goldschmidt & Llewellyn, 1950).
of 4,7-dichloroisatin (Fig. 1In the crystal, the molecules dimerize through N1—H1⋯O1 hydrogen bonds (Table 1). The molecular packing of the title compound (Fig. 2) also demonstrates parallel slipped π–π interactions that propagate along the a axis [inter-centroid distance = 3.8639 (10) Å, interplanar distance = 3.3478 (10) Å and slippage = 1.9292 (15) Å]. The 4,6-dichloro isomer of this compound does not demonstrate any π–π interactions (Mastrolia et al., 2016). The molecules are further linked through C6—H6⋯O2 interactions, which are also observed in the monosubstituted 7-chloroisatin (Sun & Cai, 2010). There are C—H⋯Cl interactions present in the structure of 4-chloroisatin (Juma et al., 2016), though no intermolecular halogen interactions are observed in the title compound.
Synthesis and crystallization
A commercial sample (Matrix Scientific) of 4,7-dichloro-1H-indole-2,3-dione was used for the crystallization. Orange block-shaped crystals were grown by slow evaporation from an acetone solution.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1505439
10.1107/S2414314616014851/vm4014sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2414314616014851/vm4014Isup2.hkl
Supporting information file. DOI: 10.1107/S2414314616014851/vm4014Isup3.cml
Data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).C8H3Cl2NO2 | F(000) = 432 |
Mr = 216.01 | Dx = 1.778 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 9837 reflections |
a = 3.8639 (10) Å | θ = 3.1–25.7° |
b = 13.933 (4) Å | µ = 0.76 mm−1 |
c = 15.019 (4) Å | T = 120 K |
β = 93.313 (9)° | Block, orange |
V = 807.2 (4) Å3 | 0.22 × 0.2 × 0.1 mm |
Z = 4 |
Bruker D8 Venture CMOS diffractometer | 1531 independent reflections |
Radiation source: Mo | 1415 reflections with I > 2σ(I) |
TRIUMPH monochromator | Rint = 0.043 |
φ and ω scans | θmax = 25.7°, θmin = 2.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | h = −4→4 |
Tmin = 0.702, Tmax = 0.745 | k = −16→16 |
29667 measured reflections | l = −18→18 |
Refinement on F2 | 1 restraint |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.025 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.061 | w = 1/[σ2(Fo2) + (0.0214P)2 + 0.6864P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max = 0.001 |
1531 reflections | Δρmax = 0.30 e Å−3 |
121 parameters | Δρmin = −0.24 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.18965 (11) | 0.91841 (3) | 0.43830 (3) | 0.02617 (13) | |
Cl2 | 0.46709 (11) | 0.52990 (3) | 0.24627 (3) | 0.02719 (13) | |
O1 | 0.9837 (3) | 0.59718 (9) | 0.58168 (8) | 0.0254 (3) | |
O2 | 0.6456 (3) | 0.78659 (9) | 0.58085 (8) | 0.0256 (3) | |
N1 | 0.7009 (3) | 0.58766 (10) | 0.44157 (9) | 0.0177 (3) | |
H1 | 0.778 (5) | 0.5327 (7) | 0.4261 (12) | 0.021* | |
C1 | 0.7951 (4) | 0.62977 (12) | 0.52103 (10) | 0.0188 (3) | |
C2 | 0.6211 (4) | 0.73103 (11) | 0.51955 (10) | 0.0174 (3) | |
C3 | 0.4447 (4) | 0.73806 (11) | 0.43009 (10) | 0.0155 (3) | |
C4 | 0.2625 (4) | 0.81121 (11) | 0.38519 (11) | 0.0178 (3) | |
C5 | 0.1416 (4) | 0.79748 (12) | 0.29710 (11) | 0.0206 (3) | |
H5 | 0.0190 | 0.8473 | 0.2658 | 0.025* | |
C6 | 0.2003 (4) | 0.71077 (13) | 0.25501 (10) | 0.0209 (3) | |
H6 | 0.1148 | 0.7017 | 0.1950 | 0.025* | |
C7 | 0.3826 (4) | 0.63658 (11) | 0.29914 (10) | 0.0176 (3) | |
C8 | 0.5044 (4) | 0.65116 (11) | 0.38626 (10) | 0.0152 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0286 (2) | 0.0197 (2) | 0.0304 (2) | 0.00536 (16) | 0.00339 (17) | −0.00055 (16) |
Cl2 | 0.0279 (2) | 0.0292 (2) | 0.0241 (2) | 0.00029 (17) | −0.00165 (16) | −0.01124 (17) |
O1 | 0.0297 (6) | 0.0260 (6) | 0.0195 (6) | 0.0056 (5) | −0.0077 (5) | 0.0022 (5) |
O2 | 0.0295 (7) | 0.0275 (6) | 0.0193 (6) | 0.0017 (5) | −0.0033 (5) | −0.0058 (5) |
N1 | 0.0194 (7) | 0.0164 (7) | 0.0169 (6) | 0.0016 (5) | −0.0015 (5) | 0.0011 (5) |
C1 | 0.0176 (8) | 0.0213 (8) | 0.0173 (8) | −0.0017 (6) | 0.0004 (6) | 0.0019 (6) |
C2 | 0.0155 (7) | 0.0207 (8) | 0.0160 (8) | −0.0017 (6) | 0.0001 (6) | 0.0011 (6) |
C3 | 0.0133 (7) | 0.0188 (8) | 0.0145 (7) | −0.0032 (6) | 0.0015 (6) | 0.0010 (6) |
C4 | 0.0144 (7) | 0.0178 (8) | 0.0216 (8) | −0.0001 (6) | 0.0038 (6) | 0.0019 (6) |
C5 | 0.0150 (7) | 0.0264 (9) | 0.0201 (8) | 0.0013 (6) | −0.0008 (6) | 0.0077 (7) |
C6 | 0.0153 (7) | 0.0338 (9) | 0.0133 (7) | −0.0030 (7) | −0.0015 (6) | 0.0034 (7) |
C7 | 0.0147 (7) | 0.0216 (8) | 0.0167 (8) | −0.0032 (6) | 0.0015 (6) | −0.0025 (6) |
C8 | 0.0118 (7) | 0.0181 (8) | 0.0157 (7) | −0.0027 (6) | 0.0008 (6) | 0.0021 (6) |
Cl1—C4 | 1.7241 (17) | C3—C4 | 1.391 (2) |
Cl2—C7 | 1.7253 (16) | C3—C8 | 1.403 (2) |
O1—C1 | 1.2207 (19) | C4—C5 | 1.391 (2) |
O2—C2 | 1.2024 (19) | C5—H5 | 0.9500 |
N1—H1 | 0.859 (5) | C5—C6 | 1.388 (2) |
N1—C1 | 1.360 (2) | C6—H6 | 0.9500 |
N1—C8 | 1.406 (2) | C6—C7 | 1.396 (2) |
C1—C2 | 1.562 (2) | C7—C8 | 1.380 (2) |
C2—C3 | 1.474 (2) | ||
C1—N1—H1 | 122.8 (13) | C5—C4—C3 | 119.56 (15) |
C1—N1—C8 | 110.78 (13) | C4—C5—H5 | 120.1 |
C8—N1—H1 | 125.8 (13) | C6—C5—C4 | 119.88 (15) |
O1—C1—N1 | 127.74 (15) | C6—C5—H5 | 120.1 |
O1—C1—C2 | 125.75 (14) | C5—C6—H6 | 119.4 |
N1—C1—C2 | 106.50 (13) | C5—C6—C7 | 121.28 (15) |
O2—C2—C1 | 123.77 (14) | C7—C6—H6 | 119.4 |
O2—C2—C3 | 131.82 (15) | C6—C7—Cl2 | 121.53 (12) |
C3—C2—C1 | 104.41 (13) | C8—C7—Cl2 | 120.01 (13) |
C4—C3—C2 | 133.23 (15) | C8—C7—C6 | 118.44 (15) |
C4—C3—C8 | 119.81 (14) | C3—C8—N1 | 111.32 (13) |
C8—C3—C2 | 106.87 (13) | C7—C8—N1 | 127.64 (14) |
C3—C4—Cl1 | 120.14 (12) | C7—C8—C3 | 121.03 (14) |
C5—C4—Cl1 | 120.30 (12) | ||
Cl1—C4—C5—C6 | −179.73 (12) | C2—C3—C8—N1 | 1.18 (17) |
Cl2—C7—C8—N1 | 0.3 (2) | C2—C3—C8—C7 | −177.54 (14) |
Cl2—C7—C8—C3 | 178.74 (11) | C3—C4—C5—C6 | 0.6 (2) |
O1—C1—C2—O2 | −3.1 (3) | C4—C3—C8—N1 | 178.20 (13) |
O1—C1—C2—C3 | 175.86 (15) | C4—C3—C8—C7 | −0.5 (2) |
O2—C2—C3—C4 | 3.3 (3) | C4—C5—C6—C7 | −0.6 (2) |
O2—C2—C3—C8 | 179.75 (17) | C5—C6—C7—Cl2 | −178.14 (12) |
N1—C1—C2—O2 | 178.29 (15) | C5—C6—C7—C8 | 0.0 (2) |
N1—C1—C2—C3 | −2.77 (16) | C6—C7—C8—N1 | −177.96 (14) |
C1—N1—C8—C3 | −3.17 (17) | C6—C7—C8—C3 | 0.5 (2) |
C1—N1—C8—C7 | 175.44 (15) | C8—N1—C1—O1 | −175.00 (16) |
C1—C2—C3—C4 | −175.52 (16) | C8—N1—C1—C2 | 3.59 (16) |
C1—C2—C3—C8 | 0.94 (16) | C8—C3—C4—Cl1 | −179.71 (11) |
C2—C3—C4—Cl1 | −3.6 (2) | C8—C3—C4—C5 | −0.1 (2) |
C2—C3—C4—C5 | 176.01 (15) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1i | 0.86 (1) | 2.04 (1) | 2.8788 (19) | 167 (2) |
C6—H6···O2ii | 0.95 | 2.43 | 3.285 (2) | 150 |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) x−1, −y+3/2, z−1/2. |
Acknowledgements
We greatly acknowledge support from the National Science Foundation (CHE-1429086).
References
Bruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Goldschmidt, G. H. & Llewellyn, F. J. (1950). Acta Cryst. 3, 294–305. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Juma, R. M., Golen, J. A. & Manke, D. R. (2016). IUCrData, 1, x160689. Google Scholar
Mastrolia, R. J., Golen, J. A. & Manke, D. R. (2016). IUCrData, 1, x160695. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sun, J. & Cai, Z.-S. (2010). Acta Cryst. E66, o25. Web of Science CSD CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.