organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4,7-Di­chloro-1H-indole-2,3-dione

aDepartment of Chemistry and Biochemistry, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA
*Correspondence e-mail: dmanke@umassd.edu

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 18 September 2016; accepted 20 September 2016; online 23 September 2016)

The title compound, C8H3Cl2NO2, has a single near-planar mol­ecule in the asymmetric unit, with the non-H atoms having a mean deviation from planarity of 0.042 Å. In the crystal, the mol­ecules dimerize through two N—H⋯O hydrogen bonds. The mol­ecules are further linked through slipped ππ inter­actions that propagate along the a axis [inter-centroid distance = 3.8639 (10) Å, inter­planar distance = 3.3478 (10) Å and slippage = 1.9292 (15) Å].

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Herein we report the crystal structure of 4,7-di­chloro­isatin (Fig. 1[link]). There is a single mol­ecule in the asymmetric unit that has a mean deviation from planarity of only 0.042 Å for the non-H atoms. The bond lengths and angles of the 1H-indole-2,3-dione core are similar to those observed in the parent isatin (Goldschmidt & Llewellyn, 1950[Goldschmidt, G. H. & Llewellyn, F. J. (1950). Acta Cryst. 3, 294-305.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radius.

In the crystal, the mol­ecules dimerize through N1—H1⋯O1 hydrogen bonds (Table 1[link]). The mol­ecular packing of the title compound (Fig. 2[link]) also demonstrates parallel slipped ππ inter­actions that propagate along the a axis [inter-centroid distance = 3.8639 (10) Å, inter­planar distance = 3.3478 (10) Å and slippage = 1.9292 (15) Å]. The 4,6-di­chloro isomer of this compound does not demonstrate any ππ inter­actions (Mastrolia et al., 2016[Mastrolia, R. J., Golen, J. A. & Manke, D. R. (2016). IUCrData, 1, x160695.]). The mol­ecules are further linked through C6—H6⋯O2 inter­actions, which are also observed in the monosubstituted 7-chloro­isatin (Sun & Cai, 2010[Sun, J. & Cai, Z.-S. (2010). Acta Cryst. E66, o25.]). There are C—H⋯Cl inter­actions present in the structure of 4-chloro­isatin (Juma et al., 2016[Juma, R. M., Golen, J. A. & Manke, D. R. (2016). IUCrData, 1, x160689.]), though no inter­molecular halogen inter­actions are observed in the title compound.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 (1) 2.04 (1) 2.8788 (19) 167 (2)
C6—H6⋯O2ii 0.95 2.43 3.285 (2) 150
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
The mol­ecular packing of the title compound along the a axis, with hydrogen bonds shown as dashed lines.

Synthesis and crystallization

A commercial sample (Matrix Scientific) of 4,7-di­chloro-1H-indole-2,3-dione was used for the crystallization. Orange block-shaped crystals were grown by slow evaporation from an acetone solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C8H3Cl2NO2
Mr 216.01
Crystal system, space group Monoclinic, P21/c
Temperature (K) 120
a, b, c (Å) 3.8639 (10), 13.933 (4), 15.019 (4)
β (°) 93.313 (9)
V3) 807.2 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.76
Crystal size (mm) 0.22 × 0.2 × 0.1
 
Data collection
Diffractometer Bruker D8 Venture CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.702, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 29667, 1531, 1415
Rint 0.043
(sin θ/λ)max−1) 0.610
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.061, 1.08
No. of reflections 1531
No. of parameters 121
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.30, −0.24
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

4,7-Dichloro-1H-indole-2,3-dione top
Crystal data top
C8H3Cl2NO2F(000) = 432
Mr = 216.01Dx = 1.778 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9837 reflections
a = 3.8639 (10) Åθ = 3.1–25.7°
b = 13.933 (4) ŵ = 0.76 mm1
c = 15.019 (4) ÅT = 120 K
β = 93.313 (9)°Block, orange
V = 807.2 (4) Å30.22 × 0.2 × 0.1 mm
Z = 4
Data collection top
Bruker D8 Venture CMOS
diffractometer
1531 independent reflections
Radiation source: Mo1415 reflections with I > 2σ(I)
TRIUMPH monochromatorRint = 0.043
φ and ω scansθmax = 25.7°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 44
Tmin = 0.702, Tmax = 0.745k = 1616
29667 measured reflectionsl = 1818
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.025H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.061 w = 1/[σ2(Fo2) + (0.0214P)2 + 0.6864P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
1531 reflectionsΔρmax = 0.30 e Å3
121 parametersΔρmin = 0.24 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.18965 (11)0.91841 (3)0.43830 (3)0.02617 (13)
Cl20.46709 (11)0.52990 (3)0.24627 (3)0.02719 (13)
O10.9837 (3)0.59718 (9)0.58168 (8)0.0254 (3)
O20.6456 (3)0.78659 (9)0.58085 (8)0.0256 (3)
N10.7009 (3)0.58766 (10)0.44157 (9)0.0177 (3)
H10.778 (5)0.5327 (7)0.4261 (12)0.021*
C10.7951 (4)0.62977 (12)0.52103 (10)0.0188 (3)
C20.6211 (4)0.73103 (11)0.51955 (10)0.0174 (3)
C30.4447 (4)0.73806 (11)0.43009 (10)0.0155 (3)
C40.2625 (4)0.81121 (11)0.38519 (11)0.0178 (3)
C50.1416 (4)0.79748 (12)0.29710 (11)0.0206 (3)
H50.01900.84730.26580.025*
C60.2003 (4)0.71077 (13)0.25501 (10)0.0209 (3)
H60.11480.70170.19500.025*
C70.3826 (4)0.63658 (11)0.29914 (10)0.0176 (3)
C80.5044 (4)0.65116 (11)0.38626 (10)0.0152 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0286 (2)0.0197 (2)0.0304 (2)0.00536 (16)0.00339 (17)0.00055 (16)
Cl20.0279 (2)0.0292 (2)0.0241 (2)0.00029 (17)0.00165 (16)0.01124 (17)
O10.0297 (6)0.0260 (6)0.0195 (6)0.0056 (5)0.0077 (5)0.0022 (5)
O20.0295 (7)0.0275 (6)0.0193 (6)0.0017 (5)0.0033 (5)0.0058 (5)
N10.0194 (7)0.0164 (7)0.0169 (6)0.0016 (5)0.0015 (5)0.0011 (5)
C10.0176 (8)0.0213 (8)0.0173 (8)0.0017 (6)0.0004 (6)0.0019 (6)
C20.0155 (7)0.0207 (8)0.0160 (8)0.0017 (6)0.0001 (6)0.0011 (6)
C30.0133 (7)0.0188 (8)0.0145 (7)0.0032 (6)0.0015 (6)0.0010 (6)
C40.0144 (7)0.0178 (8)0.0216 (8)0.0001 (6)0.0038 (6)0.0019 (6)
C50.0150 (7)0.0264 (9)0.0201 (8)0.0013 (6)0.0008 (6)0.0077 (7)
C60.0153 (7)0.0338 (9)0.0133 (7)0.0030 (7)0.0015 (6)0.0034 (7)
C70.0147 (7)0.0216 (8)0.0167 (8)0.0032 (6)0.0015 (6)0.0025 (6)
C80.0118 (7)0.0181 (8)0.0157 (7)0.0027 (6)0.0008 (6)0.0021 (6)
Geometric parameters (Å, º) top
Cl1—C41.7241 (17)C3—C41.391 (2)
Cl2—C71.7253 (16)C3—C81.403 (2)
O1—C11.2207 (19)C4—C51.391 (2)
O2—C21.2024 (19)C5—H50.9500
N1—H10.859 (5)C5—C61.388 (2)
N1—C11.360 (2)C6—H60.9500
N1—C81.406 (2)C6—C71.396 (2)
C1—C21.562 (2)C7—C81.380 (2)
C2—C31.474 (2)
C1—N1—H1122.8 (13)C5—C4—C3119.56 (15)
C1—N1—C8110.78 (13)C4—C5—H5120.1
C8—N1—H1125.8 (13)C6—C5—C4119.88 (15)
O1—C1—N1127.74 (15)C6—C5—H5120.1
O1—C1—C2125.75 (14)C5—C6—H6119.4
N1—C1—C2106.50 (13)C5—C6—C7121.28 (15)
O2—C2—C1123.77 (14)C7—C6—H6119.4
O2—C2—C3131.82 (15)C6—C7—Cl2121.53 (12)
C3—C2—C1104.41 (13)C8—C7—Cl2120.01 (13)
C4—C3—C2133.23 (15)C8—C7—C6118.44 (15)
C4—C3—C8119.81 (14)C3—C8—N1111.32 (13)
C8—C3—C2106.87 (13)C7—C8—N1127.64 (14)
C3—C4—Cl1120.14 (12)C7—C8—C3121.03 (14)
C5—C4—Cl1120.30 (12)
Cl1—C4—C5—C6179.73 (12)C2—C3—C8—N11.18 (17)
Cl2—C7—C8—N10.3 (2)C2—C3—C8—C7177.54 (14)
Cl2—C7—C8—C3178.74 (11)C3—C4—C5—C60.6 (2)
O1—C1—C2—O23.1 (3)C4—C3—C8—N1178.20 (13)
O1—C1—C2—C3175.86 (15)C4—C3—C8—C70.5 (2)
O2—C2—C3—C43.3 (3)C4—C5—C6—C70.6 (2)
O2—C2—C3—C8179.75 (17)C5—C6—C7—Cl2178.14 (12)
N1—C1—C2—O2178.29 (15)C5—C6—C7—C80.0 (2)
N1—C1—C2—C32.77 (16)C6—C7—C8—N1177.96 (14)
C1—N1—C8—C33.17 (17)C6—C7—C8—C30.5 (2)
C1—N1—C8—C7175.44 (15)C8—N1—C1—O1175.00 (16)
C1—C2—C3—C4175.52 (16)C8—N1—C1—C23.59 (16)
C1—C2—C3—C80.94 (16)C8—C3—C4—Cl1179.71 (11)
C2—C3—C4—Cl13.6 (2)C8—C3—C4—C50.1 (2)
C2—C3—C4—C5176.01 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.86 (1)2.04 (1)2.8788 (19)167 (2)
C6—H6···O2ii0.952.433.285 (2)150
Symmetry codes: (i) x+2, y+1, z+1; (ii) x1, y+3/2, z1/2.
 

Acknowledgements

We greatly acknowledge support from the National Science Foundation (CHE-1429086).

References

First citationBruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGoldschmidt, G. H. & Llewellyn, F. J. (1950). Acta Cryst. 3, 294–305.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationJuma, R. M., Golen, J. A. & Manke, D. R. (2016). IUCrData, 1, x160689.  Google Scholar
First citationMastrolia, R. J., Golen, J. A. & Manke, D. R. (2016). IUCrData, 1, x160695.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSun, J. & Cai, Z.-S. (2010). Acta Cryst. E66, o25.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds