organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4-{(1E,3E)-4-[4-(Di­methyl­amino)­phen­yl]buta-1,3-dien-1-yl}-1-methyl­pyridin-1-ium iodide

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Loyola College, Chennai-34, Tamilnadu, India, and bPG and Research Department of Physics, Queen Mary's College, Chennai-4, Tamilnadu, India
*Correspondence e-mail: guqmc@yahoo.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 7 September 2016; accepted 15 September 2016; online 27 September 2016)

The title mol­ecular salt, C18H21N2+·I, consists of a pyridinium cation and an I anion. The cation exists in an E,E conformation with respect to the two C=C double bonds, and is roughly planar with the pyridinium ring being inclined to the benzene ring by 10.8 (2) °. In the crystal, the ions are linked by a C—H⋯I hydrogen bond, and the cations are linked by C—H⋯π inter­actions, forming zigzag chains propagating along [010].

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Pyridinium derivatives have long been observed to exhibit anti­septic properties (Browning et al., 1923[Browning, C. H., Cohen, J. B., Ellingworth, S. & Gulbransen, R. (1923). BMJ, 2, 326.]). Pyridinium chromophore compounds are particularly important because of their activity against methicillin-resistant Staphylococcus aureus (MRSA),which is a drug-resistant bacterium (Wainwright & Kristiansen, 2003[Wainwright, M. & Kristiansen, J. E. (2003). Int. J. Antimicrob. Agents, 22, 479-486.]; Chanawanno et al., 2010[Chanawanno, K., Chantrapromma, S., Anantapong, T., Kanjana-Opas, A. & Fun, H. K. (2010). Eur. J. Med. Chem. 45, 4199-4208.]). Pyridinium halide salts possess promising anti­microbial properties due to the reactive functional groups covalently bonded to the long hydro­phobic chain (Fisicaro et al., 1990[Fisicaro, E., Pelizzetti, E., Barbieri, M., Savarino, P. & Viscardi, G. (1990). Thermochim. Acta, 168, 143-159.]; Chanawanno et al., 2010[Chanawanno, K., Chantrapromma, S., Anantapong, T., Kanjana-Opas, A. & Fun, H. K. (2010). Eur. J. Med. Chem. 45, 4199-4208.]). Anions in pyridinium derivatives have been proven to control their anti­microbial activity and different anion kinds can exhibit different anti­microbial activities (Pernak et al., 2001[Pernak, J., Kalewska, J., Ksycińska, H. & Cybulski, J. (2001). Eur. J. Med. Chem. 36, 899-907.]). The crystal structures of some closely related pyridinium iodide salts have been reported, viz. (E)-2-[4-(di­methyl­amino)­styr­yl]-1-methyl­pyridinium triiodide (Fun et al., 2011[Fun, H.-K., Chanawanno, K. & Chantrapromma, S. (2011). Acta Cryst. E67, o2151.]), 2-[(E)-4-(di­ethyl­amino)­styr­yl]-1-methyl­pyridinium iodide (Kaewmanee et al., 2010[Kaewmanee, N., Chanawanno, K., Chantrapromma, S. & Fun, H.-K. (2010). Acta Cryst. E66, o2639-o2640.]), (E)-1-methyl-2-styrylpyridinium iodide (Fun et al., 2009[Fun, H.-K., Chanawanno, K. & Chantrapromma, S. (2009). Acta Cryst. E65, o1934-o1935.]) and 2-[(E)-2-(4-chloro­phen­yl)ethen­yl]-1-methyl­pyridinium iodide monohydrate (Chanawanno et al. 2008[Chanawanno, K., Chantrapromma, S. & Fun, H.-K. (2008). Acta Cryst. E64, o1882-o1883.]).

The asymmetric unit of the title mol­ecular salt, Fig. 1[link], comprises a pyridinium cation and an I anion. The bond lengths and angles for the cation are comparable with those of the closely related structures mentioned above. The cation exists in an E,E conformation with respect to the two C=C double bonds, C6=C7 and C8=C9. It is roughly planar with the pyridinium ring (N1/C1–C5) being inclined to the benzene ring (C10–C15) by 10.8 (2)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title mol­ecular salt, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

In the crystal, the ions are linked by a C—H⋯I hydrogen bond, and the cations are linked by C—H⋯π inter­actions, forming zigzag chains propagating along the b-axis direction (Table 1[link] and Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C10–C15 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯I1 0.93 2.99 3.855 (5) 154
C12—H12⋯Cgi 0.93 2.95 3.577 (5) 126
Symmetry code: (i) [-x-1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
A partial view along the c axis of the crystal packing of the title mol­ecular salt. The C—H⋯I hydrogen bond and the C—H⋯π inter­actions are shown as dashed lines (see Table 1[link]), and for clarity only H atoms H3 and H12 have been included.

Synthesis and crystallization

The title mol­ecular salt was synthesized by the Knoevenagel condensation of 1,4-dimethyl pyridinium iodide (2.35 g, 10 mmol) in methanol (30 ml) and 4-N,N-di­methyl­amino cinnamaldehyde (1.75 g, 10 mmol) in the presence of piperidine (0.2 ml). The total mixture was taken in a round-bottom flask (1000 ml capacity) of a Dean–Stark apparatus. The mixture was refluxed for 12 h and then cooled to room temperature. The product was filtered and recrystallized three times from methanol solution yielding black block-like crystals (m.p. 539 K).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C18H21N2+·I
Mr 392.27
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 6.6659 (4), 7.4965 (5), 34.7364 (17)
β (°) 94.7132 (19)
V3) 1729.94 (18)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.85
Crystal size (mm) 0.25 × 0.22 × 0.18
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.636, 0.732
No. of measured, independent and observed [I > 2σ(I)] reflections 12906, 3028, 2887
Rint 0.028
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.080, 1.33
No. of reflections 3022
No. of parameters 193
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.35, −1.04
Computer programs: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL-2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), SHELXTL (Sheldrick 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), SHELXTL (Sheldrick 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick 2008); program(s) used to refine structure: SHELXL-2014/7 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick 2008).

4-{(1E,3E)-4-[4-(Dimethylamino)phenyl]buta-1,3-dien-1-yl}-1-methylpyridin-1-ium iodide top
Crystal data top
C18H21N2+·IDx = 1.506 Mg m3
Mr = 392.27Melting point: 539 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 6.6659 (4) ÅCell parameters from 7371 reflections
b = 7.4965 (5) Åθ = 2.8–26.8°
c = 34.7364 (17) ŵ = 1.85 mm1
β = 94.7132 (19)°T = 296 K
V = 1729.94 (18) Å3Block, black
Z = 40.25 × 0.22 × 0.18 mm
F(000) = 784
Data collection top
Bruker APEXII CCD
diffractometer
2887 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.028
φ and ω scansθmax = 25.0°, θmin = 1.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 77
Tmin = 0.636, Tmax = 0.732k = 78
12906 measured reflectionsl = 4138
3028 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.0122P)2 + 3.3223P]
where P = (Fo2 + 2Fc2)/3
S = 1.33(Δ/σ)max = 0.002
3022 reflectionsΔρmax = 0.35 e Å3
193 parametersΔρmin = 1.04 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6000 (7)0.9316 (6)0.58510 (14)0.0499 (12)
H10.66261.00270.60450.060*
C20.6891 (7)0.9085 (7)0.55189 (15)0.0531 (12)
H20.81200.96350.54900.064*
C30.4274 (7)0.7278 (6)0.52763 (13)0.0458 (11)
H30.36890.65730.50770.055*
C40.3317 (7)0.7466 (6)0.56030 (13)0.0445 (11)
H40.20910.68970.56240.053*
C50.4162 (6)0.8511 (5)0.59099 (12)0.0374 (10)
C60.3244 (7)0.8776 (6)0.62645 (13)0.0435 (11)
H60.39550.94680.64510.052*
C70.1463 (7)0.8128 (6)0.63545 (13)0.0402 (10)
H70.07020.74840.61660.048*
C80.0656 (7)0.8357 (6)0.67190 (13)0.0427 (11)
H80.13850.90380.69060.051*
C90.1093 (6)0.7647 (6)0.68079 (12)0.0392 (10)
H90.18290.70360.66110.047*
C100.1968 (6)0.7721 (5)0.71744 (12)0.0346 (9)
C110.3882 (7)0.6997 (6)0.72128 (12)0.0395 (10)
H110.45790.64840.69980.047*
C120.4762 (6)0.7016 (6)0.75548 (12)0.0394 (10)
H120.60420.65350.75650.047*
C130.3763 (6)0.7755 (5)0.78926 (12)0.0327 (9)
C140.1835 (6)0.8477 (6)0.78520 (13)0.0393 (10)
H140.11210.89730.80670.047*
C150.0986 (6)0.8470 (6)0.75079 (13)0.0404 (10)
H150.02800.89770.74940.048*
C160.6777 (6)0.7474 (7)0.82429 (13)0.0485 (12)
H16A0.75050.82540.80620.073*
H16B0.71690.77040.84980.073*
H16C0.70760.62570.81740.073*
C170.3576 (8)0.8521 (7)0.85801 (13)0.0516 (13)
H17A0.22940.79440.86270.077*
H17B0.43600.83270.87960.077*
H17C0.33780.97780.85460.077*
C180.7111 (8)0.7743 (8)0.48821 (15)0.0601 (14)
H18A0.80840.68120.49340.090*
H18B0.77830.88120.48110.090*
H18C0.61600.73840.46740.090*
I10.14120 (5)0.59463 (4)0.43097 (2)0.04734 (12)
N10.6043 (6)0.8081 (5)0.52308 (11)0.0443 (9)
N20.4628 (5)0.7789 (5)0.82341 (10)0.0389 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.053 (3)0.042 (3)0.054 (3)0.015 (2)0.005 (2)0.009 (2)
C20.050 (3)0.045 (3)0.066 (3)0.014 (2)0.012 (2)0.002 (3)
C30.053 (3)0.045 (3)0.040 (2)0.003 (2)0.002 (2)0.002 (2)
C40.043 (3)0.040 (3)0.051 (3)0.008 (2)0.004 (2)0.001 (2)
C50.042 (2)0.028 (2)0.042 (2)0.0023 (18)0.0025 (19)0.0016 (18)
C60.054 (3)0.034 (3)0.042 (2)0.005 (2)0.004 (2)0.004 (2)
C70.047 (3)0.033 (2)0.041 (2)0.000 (2)0.004 (2)0.002 (2)
C80.050 (3)0.037 (2)0.041 (2)0.001 (2)0.005 (2)0.004 (2)
C90.044 (3)0.032 (2)0.040 (2)0.0036 (19)0.0011 (19)0.0025 (19)
C100.036 (2)0.028 (2)0.039 (2)0.0037 (18)0.0005 (18)0.0025 (18)
C110.047 (3)0.032 (2)0.038 (2)0.006 (2)0.0032 (19)0.0099 (19)
C120.036 (2)0.038 (2)0.043 (2)0.009 (2)0.0010 (19)0.004 (2)
C130.033 (2)0.025 (2)0.038 (2)0.0037 (17)0.0066 (17)0.0030 (18)
C140.032 (2)0.043 (3)0.041 (2)0.0004 (19)0.0071 (18)0.007 (2)
C150.030 (2)0.044 (3)0.046 (3)0.0022 (18)0.0033 (19)0.003 (2)
C160.041 (3)0.063 (3)0.041 (3)0.006 (2)0.005 (2)0.003 (2)
C170.061 (3)0.054 (3)0.038 (3)0.010 (2)0.007 (2)0.002 (2)
C180.070 (4)0.058 (3)0.055 (3)0.007 (3)0.028 (3)0.010 (3)
I10.04592 (18)0.0529 (2)0.04281 (18)0.01053 (15)0.00116 (12)0.00207 (16)
N10.054 (2)0.036 (2)0.044 (2)0.0072 (18)0.0102 (18)0.0074 (18)
N20.0374 (19)0.044 (2)0.0345 (19)0.0011 (17)0.0022 (15)0.0032 (17)
Geometric parameters (Å, º) top
C1—C21.351 (7)C11—C121.367 (6)
C1—C51.396 (6)C11—H110.9300
C1—H10.9300C12—C131.414 (6)
C2—N11.339 (6)C12—H120.9300
C2—H20.9300C13—N21.361 (5)
C3—N11.345 (6)C13—C141.412 (6)
C3—C41.354 (6)C14—C151.364 (6)
C3—H30.9300C14—H140.9300
C4—C51.403 (6)C15—H150.9300
C4—H40.9300C16—N21.455 (5)
C5—C61.433 (6)C16—H16A0.9600
C6—C71.344 (6)C16—H16B0.9600
C6—H60.9300C16—H16C0.9600
C7—C81.426 (6)C17—N21.449 (5)
C7—H70.9300C17—H17A0.9600
C8—C91.341 (6)C17—H17B0.9600
C8—H80.9300C17—H17C0.9600
C9—C101.444 (6)C18—N11.476 (6)
C9—H90.9300C18—H18A0.9600
C10—C151.401 (6)C18—H18B0.9600
C10—C111.403 (6)C18—H18C0.9600
C2—C1—C5121.5 (4)C13—C12—H12119.4
C2—C1—H1119.3N2—C13—C14122.3 (4)
C5—C1—H1119.3N2—C13—C12121.8 (4)
N1—C2—C1121.5 (4)C14—C13—C12115.9 (4)
N1—C2—H2119.3C15—C14—C13122.2 (4)
C1—C2—H2119.3C15—C14—H14118.9
N1—C3—C4122.0 (4)C13—C14—H14118.9
N1—C3—H3119.0C14—C15—C10121.8 (4)
C4—C3—H3119.0C14—C15—H15119.1
C3—C4—C5120.5 (4)C10—C15—H15119.1
C3—C4—H4119.7N2—C16—H16A109.5
C5—C4—H4119.7N2—C16—H16B109.5
C1—C5—C4115.6 (4)H16A—C16—H16B109.5
C1—C5—C6120.5 (4)N2—C16—H16C109.5
C4—C5—C6123.9 (4)H16A—C16—H16C109.5
C7—C6—C5126.7 (4)H16B—C16—H16C109.5
C7—C6—H6116.7N2—C17—H17A109.5
C5—C6—H6116.7N2—C17—H17B109.5
C6—C7—C8124.6 (4)H17A—C17—H17B109.5
C6—C7—H7117.7N2—C17—H17C109.5
C8—C7—H7117.7H17A—C17—H17C109.5
C9—C8—C7123.7 (4)H17B—C17—H17C109.5
C9—C8—H8118.1N1—C18—H18A109.5
C7—C8—H8118.1N1—C18—H18B109.5
C8—C9—C10127.6 (4)H18A—C18—H18B109.5
C8—C9—H9116.2N1—C18—H18C109.5
C10—C9—H9116.2H18A—C18—H18C109.5
C15—C10—C11116.3 (4)H18B—C18—H18C109.5
C15—C10—C9123.3 (4)C2—N1—C3118.9 (4)
C11—C10—C9120.3 (4)C2—N1—C18120.5 (4)
C12—C11—C10122.5 (4)C3—N1—C18120.4 (4)
C12—C11—H11118.8C13—N2—C17121.3 (4)
C10—C11—H11118.8C13—N2—C16120.2 (3)
C11—C12—C13121.3 (4)C17—N2—C16117.0 (4)
C11—C12—H12119.4
C5—C1—C2—N10.4 (8)C11—C12—C13—N2179.7 (4)
N1—C3—C4—C50.4 (7)C11—C12—C13—C140.7 (6)
C2—C1—C5—C40.2 (7)N2—C13—C14—C15178.8 (4)
C2—C1—C5—C6180.0 (5)C12—C13—C14—C150.2 (6)
C3—C4—C5—C10.2 (7)C13—C14—C15—C100.9 (7)
C3—C4—C5—C6179.9 (4)C11—C10—C15—C140.7 (6)
C1—C5—C6—C7178.0 (5)C9—C10—C15—C14178.3 (4)
C4—C5—C6—C71.8 (7)C1—C2—N1—C30.5 (7)
C5—C6—C7—C8176.8 (4)C1—C2—N1—C18175.6 (5)
C6—C7—C8—C9177.6 (5)C4—C3—N1—C20.5 (7)
C7—C8—C9—C10176.1 (4)C4—C3—N1—C18175.6 (5)
C8—C9—C10—C155.0 (7)C14—C13—N2—C172.1 (6)
C8—C9—C10—C11176.1 (4)C12—C13—N2—C17178.9 (4)
C15—C10—C11—C120.2 (6)C14—C13—N2—C16163.7 (4)
C9—C10—C11—C12179.2 (4)C12—C13—N2—C1615.2 (6)
C10—C11—C12—C130.9 (7)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C10–C15 ring.
D—H···AD—HH···AD···AD—H···A
C3—H3···I10.932.993.855 (5)154
C12—H12···Cgi0.932.953.577 (5)126
Symmetry code: (i) x1, y1/2, z+3/2.
 

Acknowledgements

The authors thank DST–SERB, India for funding, the Central Instrumentation Facility, Queen Mary's College, Chennai-4 for computing facilities and V. Ramkumar, Department of Chemistry, IIT, Madras, for the X-ray data collection facility.

References

First citationBrowning, C. H., Cohen, J. B., Ellingworth, S. & Gulbransen, R. (1923). BMJ, 2, 326.  Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChanawanno, K., Chantrapromma, S., Anantapong, T., Kanjana-Opas, A. & Fun, H. K. (2010). Eur. J. Med. Chem. 45, 4199–4208.  CrossRef CAS PubMed Google Scholar
First citationChanawanno, K., Chantrapromma, S. & Fun, H.-K. (2008). Acta Cryst. E64, o1882–o1883.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFisicaro, E., Pelizzetti, E., Barbieri, M., Savarino, P. & Viscardi, G. (1990). Thermochim. Acta, 168, 143–159.  CrossRef CAS Web of Science Google Scholar
First citationFun, H.-K., Chanawanno, K. & Chantrapromma, S. (2009). Acta Cryst. E65, o1934–o1935.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Chanawanno, K. & Chantrapromma, S. (2011). Acta Cryst. E67, o2151.  CrossRef IUCr Journals Google Scholar
First citationKaewmanee, N., Chanawanno, K., Chantrapromma, S. & Fun, H.-K. (2010). Acta Cryst. E66, o2639–o2640.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPernak, J., Kalewska, J., Ksycińska, H. & Cybulski, J. (2001). Eur. J. Med. Chem. 36, 899–907.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWainwright, M. & Kristiansen, J. E. (2003). Int. J. Antimicrob. Agents, 22, 479–486.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds