organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-(6-Methyl-1-benzo­furan-3-yl)acetic acid

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Govt. First Grade College, Mulbagal, Kolar Dist. 563 131, Karnataka, India, bDepartment of Physics, Govt. College for Women, Mandya 571 401, Karnataka, India, cDepartment of Physics, Govt. College for Women, Kolar 563 101, Karnataka, India, dDepartment of Chemistry, P.C Jabin Science College, Hubli 580 031, Karnataka, India, eDepartment of Physics, Govt. First Grade College, Malur, Kolar 563 160, Karnataka, India, and fDepartment of Physics, Sapthagiri College of Engineering, Bangalore 560 057, Karnataka, India
*Correspondence e-mail: kvarjunagowda@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 2 September 2016; accepted 9 September 2016; online 27 September 2016)

The asymmetric unit of the title compound, C11H10O3, contains two crystallographically independent mol­ecules (A and B) with nearly matching conformations. Both mol­ecules are almost planar [r.m.s. overlay fit for the non-hydrogen atoms = 0.011 (1) Å] and in each mol­ecule there is a short intra­molecular C—H⋯O contact. In both mol­ecules, the OH group of the acetic acid residue occupies a position approximately anti­periplanar to the C atom of the heterocycle. In the crystal, the two mol­ecules are linked by a pair of O—H⋯O hydrogen bonds, enclosing an R22(8) ring motif and forming an AB dimer. The dimers are linked by C—H⋯π inter­actions, forming columns along the [010] direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Benzo­furan derivatives have occupied an important place among various heterocycles by virtue of their involvement in medicinal chemistry and drug discovery (Hiremathad et al., 2015[Hiremathad, A., Patil, M. R. Chethana, K. R., Chand, K., Santos, M. A. & Keri, R. S. (2015). RSC Adv. 5, 96809-96828.]). Carb­oxy­lic acids such as aryl­alkanoic acids exhibit inter­esting anti-inflammatory, analgesic and anti­pyretic properties, and so have been in wide clinical use for a number of years (Basanagouda et al. 2015[Basanagouda, M., Narayanachar, Majati, I. B., Mulimani, S. S., Sunnal, S. B., Nadiger, R. V., Ghanti, A. S., Gudageri, S. F., Naik, R. & Nayak, A. (2015). Synth. Commun. 45, 2195-2202.]).

The asymmetric unit of the title compound contains two crystallographically independent mol­ecules (A = C1–C11/O1–O3 and B = C12–C22/O4–O6), which are almost identical (Fig. 1[link]). Both mol­ecules are almost planar with an r.m.s. overlay fit for the non-hydrogen atoms of 0.011 (1) Å. In each mol­ecule there is a short intra­molecular C—H⋯O contact present (Table 1[link]). The bond lengths and angles of the title mol­ecules are close to those observed for similar structures, viz. 2-(5-meth­oxy-1-benzo­furan-3-yl)acetic acid (Gowda et al., 2015[Gowda, R., Gowda, K. V. A., Reddy, M. K. & Basanagouda, M. (2015). Acta Cryst. E71, o1053-o1054.]) and 2-(5-methyl-1-benzo­furan-3-yl)acetic acid (Ramprasad et al., 2016[Ramprasad, N., Gowda, R., Gowda, K. V. A. & Basanagouda, M. (2016). IUCrData, 1, x160170.]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroid of rings C4–C9 and C15–C20, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O5 0.82 1.90 2.7144 (15) 174
O4—H4⋯O2 0.82 1.83 2.6432 (15) 175
C10—H10⋯O2 0.93 2.25 2.813 (2) 118
C21—H21⋯O5 0.93 2.37 2.916 (2) 117
C2—H2ACg1i 0.97 2.88 3.5629 (18) 128
C11—H11ACg1ii 0.96 2.95 3.733 (2) 140
C13—H13BCg2ii 0.97 2.86 3.5233 (17) 126
C22—H22CCg2i 0.96 2.77 3.6955 (18) 162
Symmetry codes: (i) x, y-1, z; (ii) x, y+1, z.
[Figure 1]
Figure 1
The mol­ecular structure of the two independent mol­ecules of the title compound, with atom labelling and 40% probability displacement ellipsoids. Figure 1 should show the O—H⋯O hydrogen bonds

In the crystal, the mol­ecules are linked by a pair of O—H⋯O hydrogen bonds, enclosing an [R_{2}^{2}](8), ring motif and forming an AB dimer (Fig. 2[link] and Table 1[link]). The dimers are linked by C—H⋯π inter­actions forming columns along the [010] direction; see Table 1[link].

[Figure 2]
Figure 2
The crystal packing of the title compound, viewed along the b axis. The hydrogen bonds are shown as dashed lines (see Table 1[link]).

Synthesis and crystallization

The title compound was synthesized according to a reported procedure (Basanagouda et al., 2015[Basanagouda, M., Narayanachar, Majati, I. B., Mulimani, S. S., Sunnal, S. B., Nadiger, R. V., Ghanti, A. S., Gudageri, S. F., Naik, R. & Nayak, A. (2015). Synth. Commun. 45, 2195-2202.]). 7-Methyl-4-bromo­methyl­coumarin (10 mM) was refluxed in 1 M NaOH (100 ml) for 2 h (the completion of the reaction was monitored by TLC). The reaction mixture was cooled, neutralized with 1 M HCl and the obtained product was filtered and dried. Pale-yellow block-like crystals were obtained by recrystallization from an ethanol and ethyl acetate solvent mixture by slow evaporation (m.p. 378–379 K).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C11H10O3
Mr 190.19
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 26.2392 (8), 5.1197 (1), 14.2546 (4)
β (°) 103.826 (1)
V3) 1859.43 (9)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.30 × 0.25 × 0.25
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.95, 0.98
No. of measured, independent and observed [I > 2σ(I)] reflections 41449, 3665, 2898
Rint 0.030
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.115, 1.02
No. of reflections 3665
No. of parameters 257
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.21, −0.19
Computer programs: APEX2, SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

(I) top
Crystal data top
C11H10O3F(000) = 800
Mr = 190.19Dx = 1.359 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 26.2392 (8) ÅCell parameters from 9885 reflections
b = 5.1197 (1) Åθ = 2.9–25.3°
c = 14.2546 (4) ŵ = 0.10 mm1
β = 103.826 (1)°T = 296 K
V = 1859.43 (9) Å3Block, pale-yellow
Z = 80.30 × 0.25 × 0.25 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2898 reflections with I > 2σ(I)
Radiation source: Sealed tubeRint = 0.030
ω and φ scanθmax = 26.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 3232
Tmin = 0.95, Tmax = 0.98k = 66
41449 measured reflectionsl = 1717
3665 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0566P)2 + 0.5754P]
where P = (Fo2 + 2Fc2)/3
3665 reflections(Δ/σ)max = 0.001
257 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.19 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.27076 (6)0.7110 (3)0.91891 (11)0.0411 (4)
C20.29455 (6)0.9059 (3)0.86353 (11)0.0450 (4)
H2A0.31110.81090.81980.054*
H2B0.26641.00890.82420.054*
C30.33414 (6)1.0892 (3)0.92134 (10)0.0402 (4)
C40.36445 (6)1.2734 (3)0.88026 (11)0.0420 (4)
C50.36823 (7)1.3405 (4)0.78736 (12)0.0535 (4)
H50.34721.25930.73340.064*
C60.40388 (7)1.5306 (4)0.77748 (13)0.0596 (5)
H60.40651.57620.71560.072*
C70.43625 (7)1.6574 (4)0.85653 (14)0.0540 (4)
C80.43251 (7)1.5924 (4)0.94871 (14)0.0554 (5)
H80.45331.67381.00280.067*
C90.39674 (6)1.4024 (4)0.95759 (11)0.0469 (4)
C100.35008 (7)1.1210 (4)1.01690 (12)0.0508 (4)
H100.33681.02551.06130.061*
C110.47501 (8)1.8610 (4)0.84131 (18)0.0741 (6)
H11A0.47142.01510.87750.111*
H11B0.46831.90360.77390.111*
H11C0.51001.79380.86280.111*
O10.23573 (5)0.5612 (2)0.86242 (8)0.0542 (3)
H10.22370.45770.89550.081*
O20.28234 (5)0.6905 (2)1.00640 (8)0.0518 (3)
O30.38825 (5)1.3103 (3)1.04283 (8)0.0594 (3)
C120.21368 (6)0.1683 (3)1.05349 (11)0.0386 (3)
C130.19482 (6)0.0334 (3)1.11280 (10)0.0419 (4)
H13A0.22470.14021.14350.050*
H13B0.18310.05631.16380.050*
C140.15189 (6)0.2120 (3)1.06360 (10)0.0374 (3)
C150.12797 (6)0.4013 (3)1.11542 (10)0.0350 (3)
C160.13567 (6)0.4802 (3)1.21139 (10)0.0394 (3)
H160.16190.40531.25950.047*
C170.10345 (6)0.6724 (3)1.23336 (10)0.0413 (4)
H170.10870.72701.29720.050*
C180.06324 (6)0.7879 (3)1.16331 (11)0.0402 (3)
C190.05549 (6)0.7099 (3)1.06785 (11)0.0453 (4)
H190.02900.78261.01970.054*
C200.08840 (6)0.5213 (3)1.04675 (10)0.0409 (4)
C210.12600 (7)0.2342 (4)0.97102 (11)0.0498 (4)
H210.13360.13480.92140.060*
C220.02904 (7)0.9954 (3)1.19135 (13)0.0508 (4)
H22A0.00710.95791.16200.076*
H22B0.03430.99801.26030.076*
H22C0.03811.16261.16950.076*
O40.24869 (4)0.3244 (2)1.10770 (8)0.0502 (3)
H40.25820.43401.07350.075*
O50.19955 (5)0.1894 (2)0.96586 (8)0.0491 (3)
O60.08679 (5)0.4203 (3)0.95682 (7)0.0548 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0426 (8)0.0394 (8)0.0417 (8)0.0048 (7)0.0105 (7)0.0023 (7)
C20.0506 (9)0.0463 (9)0.0383 (8)0.0032 (7)0.0110 (7)0.0034 (7)
C30.0392 (8)0.0435 (8)0.0381 (8)0.0042 (7)0.0095 (6)0.0026 (6)
C40.0398 (8)0.0444 (9)0.0418 (8)0.0015 (7)0.0095 (6)0.0005 (7)
C50.0582 (10)0.0605 (11)0.0415 (9)0.0127 (9)0.0113 (8)0.0008 (8)
C60.0613 (11)0.0670 (12)0.0530 (10)0.0115 (10)0.0185 (9)0.0044 (9)
C70.0424 (9)0.0512 (10)0.0699 (12)0.0024 (8)0.0167 (8)0.0000 (9)
C80.0428 (9)0.0594 (11)0.0613 (11)0.0052 (8)0.0068 (8)0.0118 (9)
C90.0409 (8)0.0555 (10)0.0435 (9)0.0017 (7)0.0084 (7)0.0018 (7)
C100.0489 (9)0.0616 (11)0.0413 (8)0.0057 (8)0.0096 (7)0.0023 (8)
C110.0583 (12)0.0636 (13)0.1043 (17)0.0143 (10)0.0275 (11)0.0002 (12)
O10.0595 (7)0.0548 (7)0.0449 (6)0.0142 (6)0.0061 (5)0.0064 (5)
O20.0627 (7)0.0525 (7)0.0401 (6)0.0085 (6)0.0123 (5)0.0049 (5)
O30.0568 (7)0.0776 (9)0.0407 (6)0.0113 (7)0.0057 (5)0.0041 (6)
C120.0412 (8)0.0369 (8)0.0393 (8)0.0051 (6)0.0126 (6)0.0023 (6)
C130.0520 (9)0.0393 (8)0.0368 (8)0.0002 (7)0.0151 (7)0.0016 (6)
C140.0448 (8)0.0354 (8)0.0349 (7)0.0048 (6)0.0155 (6)0.0017 (6)
C150.0386 (7)0.0342 (7)0.0340 (7)0.0037 (6)0.0119 (6)0.0009 (6)
C160.0436 (8)0.0436 (8)0.0312 (7)0.0017 (7)0.0093 (6)0.0021 (6)
C170.0502 (9)0.0441 (9)0.0320 (7)0.0005 (7)0.0144 (6)0.0012 (6)
C180.0433 (8)0.0374 (8)0.0433 (8)0.0017 (7)0.0171 (7)0.0024 (6)
C190.0460 (9)0.0474 (9)0.0406 (8)0.0061 (7)0.0065 (7)0.0055 (7)
C200.0468 (8)0.0456 (9)0.0302 (7)0.0031 (7)0.0089 (6)0.0015 (6)
C210.0604 (10)0.0518 (10)0.0387 (8)0.0042 (8)0.0148 (7)0.0087 (7)
C220.0545 (10)0.0444 (9)0.0579 (10)0.0066 (8)0.0222 (8)0.0023 (8)
O40.0555 (7)0.0508 (7)0.0439 (6)0.0107 (6)0.0110 (5)0.0048 (5)
O50.0591 (7)0.0481 (7)0.0401 (6)0.0065 (6)0.0118 (5)0.0067 (5)
O60.0644 (7)0.0654 (8)0.0308 (6)0.0123 (6)0.0041 (5)0.0061 (5)
Geometric parameters (Å, º) top
C1—O21.2156 (18)C12—O51.2199 (17)
C1—O11.3143 (19)C12—O41.3195 (19)
C1—C21.498 (2)C12—C131.492 (2)
C2—C31.493 (2)C13—C141.490 (2)
C2—H2A0.9700C13—H13A0.9700
C2—H2B0.9700C13—H13B0.9700
C3—C101.336 (2)C14—C211.337 (2)
C3—C41.445 (2)C14—C151.449 (2)
C4—C91.387 (2)C15—C201.389 (2)
C4—C51.394 (2)C15—C161.3939 (19)
C5—C61.380 (2)C16—C171.381 (2)
C5—H50.9300C16—H160.9300
C6—C71.398 (3)C17—C181.399 (2)
C6—H60.9300C17—H170.9300
C7—C81.381 (3)C18—C191.386 (2)
C7—C111.508 (3)C18—C221.505 (2)
C8—C91.378 (2)C19—C201.376 (2)
C8—H80.9300C19—H190.9300
C9—O31.3703 (19)C20—O61.3736 (17)
C10—O31.379 (2)C21—O61.381 (2)
C10—H100.9300C21—H210.9300
C11—H11A0.9600C22—H22A0.9600
C11—H11B0.9600C22—H22B0.9600
C11—H11C0.9600C22—H22C0.9600
O1—H10.8200O4—H40.8200
O2—C1—O1123.02 (15)O5—C12—O4123.00 (14)
O2—C1—C2124.38 (15)O5—C12—C13125.51 (14)
O1—C1—C2112.59 (13)O4—C12—C13111.48 (12)
C3—C2—C1116.77 (13)C14—C13—C12118.29 (13)
C3—C2—H2A108.1C14—C13—H13A107.7
C1—C2—H2A108.1C12—C13—H13A107.7
C3—C2—H2B108.1C14—C13—H13B107.7
C1—C2—H2B108.1C12—C13—H13B107.7
H2A—C2—H2B107.3H13A—C13—H13B107.1
C10—C3—C4105.38 (14)C21—C14—C15105.47 (14)
C10—C3—C2130.26 (15)C21—C14—C13131.71 (14)
C4—C3—C2124.35 (13)C15—C14—C13122.78 (13)
C9—C4—C5117.98 (15)C20—C15—C16118.18 (14)
C9—C4—C3106.24 (14)C20—C15—C14106.17 (12)
C5—C4—C3135.78 (15)C16—C15—C14135.65 (14)
C6—C5—C4118.32 (16)C17—C16—C15118.42 (14)
C6—C5—H5120.8C17—C16—H16120.8
C4—C5—H5120.8C15—C16—H16120.8
C5—C6—C7122.75 (17)C16—C17—C18122.52 (14)
C5—C6—H6118.6C16—C17—H17118.7
C7—C6—H6118.6C18—C17—H17118.7
C8—C7—C6119.16 (17)C19—C18—C17119.20 (14)
C8—C7—C11120.47 (18)C19—C18—C22120.47 (14)
C6—C7—C11120.37 (18)C17—C18—C22120.33 (14)
C9—C8—C7117.52 (16)C20—C19—C18117.67 (14)
C9—C8—H8121.2C20—C19—H19121.2
C7—C8—H8121.2C18—C19—H19121.2
O3—C9—C8125.65 (16)O6—C20—C19125.98 (14)
O3—C9—C4110.07 (15)O6—C20—C15110.01 (13)
C8—C9—C4124.28 (16)C19—C20—C15123.99 (13)
C3—C10—O3112.90 (15)C14—C21—O6112.83 (14)
C3—C10—H10123.5C14—C21—H21123.6
O3—C10—H10123.5O6—C21—H21123.6
C7—C11—H11A109.5C18—C22—H22A109.5
C7—C11—H11B109.5C18—C22—H22B109.5
H11A—C11—H11B109.5H22A—C22—H22B109.5
C7—C11—H11C109.5C18—C22—H22C109.5
H11A—C11—H11C109.5H22A—C22—H22C109.5
H11B—C11—H11C109.5H22B—C22—H22C109.5
C1—O1—H1109.5C12—O4—H4109.5
C9—O3—C10105.41 (12)C20—O6—C21105.51 (12)
O2—C1—C2—C31.5 (2)O5—C12—C13—C145.5 (2)
O1—C1—C2—C3178.84 (14)O4—C12—C13—C14175.09 (13)
C1—C2—C3—C104.8 (3)C12—C13—C14—C211.9 (3)
C1—C2—C3—C4174.18 (14)C12—C13—C14—C15175.21 (13)
C10—C3—C4—C90.01 (18)C21—C14—C15—C200.51 (17)
C2—C3—C4—C9179.25 (15)C13—C14—C15—C20177.27 (14)
C10—C3—C4—C5179.0 (2)C21—C14—C15—C16179.70 (17)
C2—C3—C4—C50.2 (3)C13—C14—C15—C162.5 (3)
C9—C4—C5—C60.2 (3)C20—C15—C16—C170.4 (2)
C3—C4—C5—C6178.79 (18)C14—C15—C16—C17179.42 (15)
C4—C5—C6—C70.1 (3)C15—C16—C17—C180.7 (2)
C5—C6—C7—C80.4 (3)C16—C17—C18—C190.7 (2)
C5—C6—C7—C11179.15 (18)C16—C17—C18—C22179.62 (14)
C6—C7—C8—C90.4 (3)C17—C18—C19—C200.3 (2)
C11—C7—C8—C9179.20 (16)C22—C18—C19—C20179.35 (14)
C7—C8—C9—O3178.90 (16)C18—C19—C20—O6179.90 (14)
C7—C8—C9—C40.0 (3)C18—C19—C20—C151.4 (2)
C5—C4—C9—O3179.32 (15)C16—C15—C20—O6179.69 (13)
C3—C4—C9—O30.06 (18)C14—C15—C20—O60.48 (17)
C5—C4—C9—C80.2 (3)C16—C15—C20—C191.4 (2)
C3—C4—C9—C8179.03 (16)C14—C15—C20—C19178.39 (15)
C4—C3—C10—O30.08 (19)C15—C14—C21—O60.37 (19)
C2—C3—C10—O3179.25 (15)C13—C14—C21—O6177.13 (15)
C8—C9—O3—C10178.97 (17)C19—C20—O6—C21178.57 (16)
C4—C9—O3—C100.11 (18)C15—C20—O6—C210.27 (18)
C3—C10—O3—C90.12 (19)C14—C21—O6—C200.08 (19)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroid of rings C4–C9 and C15–C20, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1···O50.821.902.7144 (15)174
O4—H4···O20.821.832.6432 (15)175
C10—H10···O20.932.252.813 (2)118
C21—H21···O50.932.372.916 (2)117
C2—H2A···Cg1i0.972.883.5629 (18)128
C11—H11A···Cg1ii0.962.953.733 (2)140
C13—H13B···Cg2ii0.972.863.5233 (17)126
C22—H22C···Cg2i0.962.773.6955 (18)162
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z.
 

Acknowledgements

MB thanks the UGC–SWRO, Bangalore, for providing a Minor Research Project (Ref. No. 1415-MRP/14–15/KAKA067/UGC-SWRO, Diary No. 1709). The authors also thank the SAIF IIT Madras, Chennai, India, for the data collection.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBasanagouda, M., Narayanachar, Majati, I. B., Mulimani, S. S., Sunnal, S. B., Nadiger, R. V., Ghanti, A. S., Gudageri, S. F., Naik, R. & Nayak, A. (2015). Synth. Commun. 45, 2195–2202.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGowda, R., Gowda, K. V. A., Reddy, M. K. & Basanagouda, M. (2015). Acta Cryst. E71, o1053–o1054.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHiremathad, A., Patil, M. R. Chethana, K. R., Chand, K., Santos, M. A. & Keri, R. S. (2015). RSC Adv. 5, 96809–96828.  CrossRef CAS Google Scholar
First citationRamprasad, N., Gowda, R., Gowda, K. V. A. & Basanagouda, M. (2016). IUCrData, 1, x160170.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds