organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(E)-2-[(2-Butyl-4-chloro-1H-imidazol-5-yl)methyl­­idene]-N-methyl­hydrazine-1-carbo­thio­amide monohydrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Sri Venkateswara University, Tirupati 517 502, India, bDepartment of Chemical Engineering, CBIT, Gandipet, Hyderabad 500 075, India, cDepartment of Environmental Engineering and Green Technology (EGT), Malaysia–Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia, and dSchool of Chemistry, University of Hyderabad, Hyderabad 500 032, India
*Correspondence e-mail: ammireddyv@yahoo.co.in

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 24 June 2016; accepted 26 September 2016; online 30 September 2016)

The title thio­semicarbazide derivative, C10H16ClN5S·H2O, crystallized as a monohydrate. The mol­ecule has an E conformation about the azomethine C=N bond that links the methyl­hydrazine-1-carbo­thio­amide moiety to the imidazole ring. The butyl chain substituent on the imdazole ring is disordered over two sets of sites, with a refined occupancy ratio of 0.509 (9):0.491 (9). In the crystal, mol­ecules are linked by O—H⋯N and N—H⋯O hydrogen bonds involving the solvent water mol­ecule, forming chains along the c-axis direction. The chains are linked by O—H⋯S and N—H⋯S hydrogen bonds, forming a three-dimensional framework.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Thio­semicarbazones belongs to a large group of thio­urea derivatives which are derived from aldehyde and ketones. The biological activities of these compounds depends on the parent aldehyde or ketone (Beraldo & Gambinob, 2004[Beraldo, H. & Gambinob, D. (2004). Mini Rev. Med. Chem. 4, 31-39.]). The co-ordination chemistry of thio­semicarbazones has been described (Sreekanth et al., 2004[Sreekanth, A., Kala, U. L., Nayar, C. R. & Kurup, M. R. P. (2004). Polyhedron, 23, 41-47.]; Beraldo et al., 2001[Beraldo, H., Lima, R., Teixeira, L. R., Moura, A. A. & West, D. X. (2001). J. Mol. Struct. 559, 99-106.]; Mazlan et al., 2014[Mazlan, N. A., Ravoof, T. B. S., Tiekink, E. R. T., Tahir, M. I. M., Veerakumarasivam, A. & Crouse, K. A. (2014). Transition Met. Chem. 39, 633-639.]).

The title thio­semicarbazide derivative, Fig. 1[link], crystallized as a monohydrate. The mol­ecule has an E conformation about azomethine C3=N3 bond that links the methyl­hydrazine-1-carbo­thio­amide moiety to the imidazole ring.

[Figure 1]
Figure 1
A view of the mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. For clarity, the minor component (atoms C8–C10) of the disordered butyl side chain has been omitted.

In the crystal, mol­ecules are linked by O—H⋯N and N—H⋯O hydrogen bonds involving the solvent water mol­ecule, forming chains along the c-axis direction (Table 1[link] and Fig. 2[link]). The chains are linked by O—H⋯S and N—H⋯S hydrogen bonds, forming a three-dimensional framework (Table 1[link] and Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1E⋯N2 0.85 1.94 2.790 (3) 174
N1—H1⋯O1i 0.86 1.97 2.832 (3) 177
N5—H5⋯O1i 0.86 2.30 3.114 (3) 159
O1—H1D⋯S1ii 0.85 2.51 3.345 (2) 169
N4—H4⋯S1iii 0.86 2.52 3.374 (2) 169
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x-1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) -x+3, -y+1, -z+2.
[Figure 2]
Figure 2
A view along the a axis of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines (see Table 1[link]) and H atoms not involved in the hydrogen bonding have been omitted for clarity.

Synthesis and crystallization

An ethanol solution (10 ml) of 2-butyl-4-chloro-5-formyl­imidazole (0.02 moles, 3.74 g) was added slowly to a hot ethanol solution (10 ml) of 4-methyl-3-thio­semicarbazide (0.02 moles, 2.12 g) under constant stirring. The mixture was refluxed for ca 3 h and the precipitate formed was collected by filtration, washed with dry ethanol and dried in vacuo. Yellow block-like crystals were obtained by slow evaporation of a solution in ethanol after 15 days.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Elongated displacement ellipsoids on atoms C8, C9, and C10 suggested disorder. It was modelled successfully between two positions with a refined occupancy ratio of 0.509 (9):0.491 (9) for atoms C8A:C8, C9A:C9 and C10A:C10. Several restraints and/or constraints were necessary to keep bond distances, angles, and displacement ellipsoids meaningful.

Table 2
Experimental details

Crystal data
Chemical formula C10H16ClN5S·H2O
Mr 291.80
Crystal system, space group Monoclinic, P21/c
Temperature (K) 300
a, b, c (Å) 6.494 (4), 17.665 (10), 13.508 (8)
β (°) 92.402 (9)
V3) 1548.2 (16)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.38
Crystal size (mm) 0.3 × 0.2 × 0.14
 
Data collection
Diffractometer Bruker SMART CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.895, 0.949
No. of measured, independent and observed [I > 2σ(I)] reflections 15205, 3151, 2347
Rint 0.039
(sin θ/λ)max−1) 0.627
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.150, 1.03
No. of reflections 3151
No. of parameters 192
No. of restraints 90
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.23, −0.31
Computer programs: SMART and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Structural data


Computing details top

Data collection: SAINT (Bruker, 2004); cell refinement: SMART (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

(E)-2-[(2-Butyl-4-chloro-1H-imidazol-5-yl)methylidene]-N-methylhydrazine-1-carbothioamide monohydrate top
Crystal data top
C10H16ClN5S·H2OF(000) = 616
Mr = 291.80Dx = 1.252 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 6.494 (4) ÅCell parameters from 5524 reflections
b = 17.665 (10) Åθ = 2.3–24.9°
c = 13.508 (8) ŵ = 0.38 mm1
β = 92.402 (9)°T = 300 K
V = 1548.2 (16) Å3Block, yellow
Z = 40.3 × 0.2 × 0.14 mm
Data collection top
Bruker SMART CCD area detector
diffractometer
2347 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
phi and ω scansθmax = 26.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 88
Tmin = 0.895, Tmax = 0.949k = 2221
15205 measured reflectionsl = 1616
3151 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: mixed
wR(F2) = 0.150H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0896P)2 + 0.1249P]
where P = (Fo2 + 2Fc2)/3
3151 reflections(Δ/σ)max = 0.001
192 parametersΔρmax = 0.23 e Å3
90 restraintsΔρmin = 0.31 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. 1. Fixed Uiso At 1.2 times of: All C(H) groups, All C(H,H) groups, All C(H,H,H,H) groups, All N(H) groups At 1.5 times of: All C(H,H,H) groups, All O(H,H) groups 2. Restrained distances C9A-C10A = C9-C10 = C9-C8 = C9A-C8A = C8-C7 = C8A-C7 1.54 with sigma of 0.02 3. Uiso/Uaniso restraints and constraints C8 ~C8A ~C9 ~C9A ~C10 ~C10A: within 1.7A with sigma of 0.02 and sigma for terminal atoms of 0.02 4. Rigid body (RIGU) restrains C8, C8A, C9, C9A, C10, C10A with sigma for 1-2 distances of 0.004 and sigma for 1-3 distances of 0.004 5. Others Sof(H7BC)=Sof(H7BD)=Sof(C8A)=Sof(H8AA)=Sof(H8AB)=Sof(C9A)=Sof(H9AA)=Sof(H9AB)= Sof(C10A)=Sof(H10D)=Sof(H10E)=Sof(H10F)=1-FVAR(1) Sof(H7AA)=Sof(H7AB)=Sof(C8)=Sof(H8A)=Sof(H8B)=Sof(C9)=Sof(H9A)=Sof(H9B)= Sof(C10)=Sof(H10A)=Sof(H10B)=Sof(H10C)=FVAR(1) 6.a Riding coordinates: O1(H1D,H1E) 6.b Secondary CH2 refined with riding coordinates: C7(H7AA,H7AB), C7(H7BC,H7BD), C8(H8A,H8B), C8A(H8AA,H8AB), C9(H9A,H9B), C9A(H9AA,H9AB) 6.c Me refined with riding coordinates: C10(H10A,H10B,H10C), C10A(H10D,H10E,H10F) 6.d Aromatic/amide H refined with riding coordinates: N1(H1), N4(H4), N5(H5), C3(H3) 6.e Idealised Me refined as rotating group: C1(H1A,H1B,H1C)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl11.09917 (13)0.28647 (5)1.33664 (5)0.1203 (3)
S11.40870 (8)0.50705 (3)0.84042 (4)0.0775 (2)
N10.7716 (2)0.30301 (9)1.09668 (13)0.0680 (4)
H10.73900.31771.03740.082*
N20.7516 (3)0.24365 (10)1.23866 (15)0.0803 (5)
N31.0786 (2)0.39480 (9)1.02455 (12)0.0676 (4)
N41.2297 (2)0.43919 (9)0.98710 (13)0.0713 (4)
H41.33250.45411.02430.086*
N51.0461 (3)0.43806 (11)0.84178 (13)0.0777 (5)
H50.95460.41410.87370.093*
C11.0031 (4)0.45223 (17)0.73736 (19)0.1025 (8)
H1A0.97990.50540.72700.154*
H1B0.88240.42450.71550.154*
H1C1.11840.43620.70040.154*
C21.2143 (3)0.45908 (10)0.89093 (15)0.0650 (5)
C31.0989 (3)0.37222 (11)1.11367 (16)0.0689 (5)
H31.21170.38701.15380.083*
C40.9444 (3)0.32364 (11)1.15086 (14)0.0668 (5)
C50.9271 (3)0.28602 (12)1.23801 (17)0.0776 (6)
C60.6607 (3)0.25575 (11)1.15151 (18)0.0726 (5)
C70.4665 (4)0.21935 (15)1.1134 (2)0.0981 (8)
H7AA0.39300.20241.17040.118*0.491 (9)
H7AB0.38300.25851.08120.118*0.491 (9)
H7BC0.41130.24731.05650.118*0.509 (9)
H7BD0.36540.22061.16420.118*0.509 (9)
C80.4739 (19)0.1576 (8)1.0468 (9)0.138 (4)0.491 (9)
H8A0.41920.17690.98380.166*0.491 (9)
H8B0.37320.12161.06920.166*0.491 (9)
C8A0.5058 (15)0.1367 (5)1.0833 (7)0.101 (2)0.509 (9)
H8AA0.37720.10971.07070.122*0.509 (9)
H8AB0.58710.11021.13430.122*0.509 (9)
C90.6576 (17)0.1117 (7)1.0227 (7)0.141 (3)0.491 (9)
H9A0.66840.06471.05980.169*0.491 (9)
H9B0.78580.13981.02880.169*0.491 (9)
C9A0.6316 (17)0.1452 (5)0.9831 (7)0.130 (3)0.509 (9)
H9AA0.54310.16710.93100.157*0.509 (9)
H9AB0.74880.17850.99490.157*0.509 (9)
C100.5775 (17)0.1002 (7)0.9120 (6)0.157 (3)0.491 (9)
H10A0.67480.07020.87760.235*0.491 (9)
H10B0.44670.07470.91080.235*0.491 (9)
H10C0.56210.14860.88030.235*0.491 (9)
C10A0.708 (2)0.0645 (5)0.9501 (9)0.173 (4)0.509 (9)
H10D0.78300.06930.89060.259*0.509 (9)
H10E0.79660.04331.00160.259*0.509 (9)
H10F0.59150.03190.93790.259*0.509 (9)
O10.6591 (2)0.15312 (9)1.40012 (11)0.0909 (5)
H1D0.60780.11171.37850.136*
H1E0.67840.18081.34990.136*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1252 (6)0.1591 (8)0.0757 (5)0.0300 (5)0.0068 (4)0.0263 (4)
S10.0773 (4)0.0824 (4)0.0740 (4)0.0057 (2)0.0155 (3)0.0169 (3)
N10.0741 (9)0.0658 (9)0.0648 (10)0.0046 (7)0.0131 (8)0.0015 (8)
N20.0886 (11)0.0791 (11)0.0750 (13)0.0082 (9)0.0248 (10)0.0076 (9)
N30.0701 (9)0.0660 (9)0.0678 (11)0.0028 (7)0.0160 (7)0.0061 (8)
N40.0708 (9)0.0766 (10)0.0671 (11)0.0081 (8)0.0091 (8)0.0110 (8)
N50.0788 (11)0.0886 (12)0.0664 (11)0.0083 (9)0.0103 (9)0.0075 (9)
C10.1038 (17)0.132 (2)0.0707 (16)0.0195 (16)0.0034 (13)0.0140 (15)
C20.0692 (11)0.0610 (11)0.0656 (12)0.0053 (8)0.0138 (9)0.0047 (9)
C30.0759 (11)0.0653 (11)0.0661 (13)0.0026 (9)0.0101 (9)0.0034 (9)
C40.0760 (11)0.0633 (11)0.0619 (12)0.0017 (9)0.0146 (9)0.0001 (9)
C50.0891 (14)0.0808 (13)0.0636 (13)0.0051 (11)0.0133 (10)0.0068 (10)
C60.0743 (11)0.0682 (12)0.0771 (15)0.0021 (9)0.0231 (10)0.0008 (10)
C70.0727 (13)0.0956 (17)0.127 (2)0.0029 (12)0.0189 (13)0.0024 (16)
C80.123 (6)0.180 (8)0.110 (7)0.019 (5)0.016 (5)0.040 (6)
C8A0.086 (4)0.115 (5)0.101 (5)0.017 (3)0.013 (4)0.027 (4)
C90.173 (5)0.138 (7)0.111 (6)0.018 (5)0.001 (5)0.024 (5)
C9A0.165 (6)0.119 (5)0.109 (6)0.019 (4)0.027 (5)0.041 (4)
C100.182 (7)0.172 (7)0.115 (5)0.007 (6)0.003 (5)0.018 (5)
C10A0.227 (8)0.136 (6)0.159 (7)0.014 (5)0.057 (6)0.057 (5)
O10.1094 (11)0.0934 (10)0.0699 (10)0.0319 (9)0.0023 (8)0.0073 (8)
Geometric parameters (Å, º) top
Cl1—C51.703 (3)C7—H7BD0.9700
S1—C21.688 (2)C7—C81.415 (11)
N1—H10.8600C7—C8A1.540 (9)
N1—C41.363 (3)C8—H8A0.9700
N1—C61.345 (3)C8—H8B0.9700
N2—C51.364 (3)C8—C91.490 (13)
N2—C61.312 (3)C8A—H8AA0.9700
N3—N41.370 (2)C8A—H8AB0.9700
N3—C31.270 (3)C8A—C9A1.617 (12)
N4—H40.8600C9—H9A0.9700
N4—C21.345 (3)C9—H9B0.9700
N5—H50.8600C9—C101.575 (12)
N5—C11.448 (3)C9A—H9AA0.9700
N5—C21.308 (3)C9A—H9AB0.9700
C1—H1A0.9600C9A—C10A1.580 (12)
C1—H1B0.9600C10—H10A0.9600
C1—H1C0.9600C10—H10B0.9600
C3—H30.9300C10—H10C0.9600
C3—C41.428 (3)C10A—H10D0.9600
C4—C51.361 (3)C10A—H10E0.9600
C6—C71.488 (3)C10A—H10F0.9600
C7—H7AA0.9700O1—H1D0.8500
C7—H7AB0.9700O1—H1E0.8500
C7—H7BC0.9700
C4—N1—H1125.7C8—C7—H7AB107.3
C6—N1—H1125.7C8A—C7—H7BC109.5
C6—N1—C4108.54 (19)C8A—C7—H7BD109.5
C6—N2—C5104.44 (17)C7—C8—H8A105.5
C3—N3—N4118.86 (17)C7—C8—H8B105.5
N3—N4—H4120.6C7—C8—C9127.4 (10)
C2—N4—N3118.74 (17)H8A—C8—H8B106.0
C2—N4—H4120.6C9—C8—H8A105.5
C1—N5—H5117.7C9—C8—H8B105.5
C2—N5—H5117.7C7—C8A—H8AA111.1
C2—N5—C1124.62 (18)C7—C8A—H8AB111.1
N5—C1—H1A109.5C7—C8A—C9A103.1 (7)
N5—C1—H1B109.5H8AA—C8A—H8AB109.1
N5—C1—H1C109.5C9A—C8A—H8AA111.1
H1A—C1—H1B109.5C9A—C8A—H8AB111.1
H1A—C1—H1C109.5C8—C9—H9A113.2
H1B—C1—H1C109.5C8—C9—H9B113.2
N4—C2—S1119.65 (16)C8—C9—C1092.4 (10)
N5—C2—S1124.06 (17)H9A—C9—H9B110.6
N5—C2—N4116.27 (17)C10—C9—H9A113.2
N3—C3—H3120.8C10—C9—H9B113.2
N3—C3—C4118.4 (2)C8A—C9A—H9AA109.8
C4—C3—H3120.8C8A—C9A—H9AB109.8
N1—C4—C3123.13 (19)H9AA—C9A—H9AB108.3
C5—C4—N1103.76 (18)C10A—C9A—C8A109.2 (9)
C5—C4—C3133.1 (2)C10A—C9A—H9AA109.8
N2—C5—Cl1121.25 (17)C10A—C9A—H9AB109.8
C4—C5—Cl1126.82 (18)C9—C10—H10A109.5
C4—C5—N2111.9 (2)C9—C10—H10B109.5
N1—C6—C7122.9 (2)C9—C10—H10C109.5
N2—C6—N1111.4 (2)H10A—C10—H10B109.5
N2—C6—C7125.6 (2)H10A—C10—H10C109.5
C6—C7—H7AA107.3H10B—C10—H10C109.5
C6—C7—H7AB107.3C9A—C10A—H10D109.5
C6—C7—H7BC109.5C9A—C10A—H10E109.5
C6—C7—H7BD109.5C9A—C10A—H10F109.5
C6—C7—C8A110.7 (4)H10D—C10A—H10E109.5
H7AA—C7—H7AB106.9H10D—C10A—H10F109.5
H7BC—C7—H7BD108.1H10E—C10A—H10F109.5
C8—C7—C6120.1 (5)H1D—O1—H1E106.8
C8—C7—H7AA107.3
N1—C4—C5—Cl1178.29 (17)C3—C4—C5—N2177.9 (2)
N1—C4—C5—N20.0 (2)C4—N1—C6—N20.4 (2)
N1—C6—C7—C875.8 (8)C4—N1—C6—C7177.11 (19)
N1—C6—C7—C8A101.2 (4)C5—N2—C6—N10.4 (2)
N2—C6—C7—C8100.3 (8)C5—N2—C6—C7177.0 (2)
N2—C6—C7—C8A75.0 (5)C6—N1—C4—C3178.42 (17)
N3—N4—C2—S1174.50 (13)C6—N1—C4—C50.2 (2)
N3—N4—C2—N54.4 (3)C6—N2—C5—Cl1178.66 (17)
N3—C3—C4—N13.0 (3)C6—N2—C5—C40.3 (2)
N3—C3—C4—C5174.6 (2)C6—C7—C8—C913 (2)
N4—N3—C3—C4177.68 (16)C6—C7—C8A—C9A72.0 (8)
C1—N5—C2—S10.5 (3)C7—C8—C9—C10146.0 (13)
C1—N5—C2—N4178.3 (2)C7—C8A—C9A—C10A172.9 (8)
C3—N3—N4—C2175.86 (17)C8—C7—C8A—C9A45.5 (17)
C3—C4—C5—Cl10.4 (4)C8A—C7—C8—C960.1 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1E···N20.851.942.790 (3)174
N1—H1···O1i0.861.972.832 (3)177
N5—H5···O1i0.862.303.114 (3)159
O1—H1D···S1ii0.852.513.345 (2)169
N4—H4···S1iii0.862.523.374 (2)169
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x1, y+1/2, z+1/2; (iii) x+3, y+1, z+2.
 

Acknowledgements

The authors are grateful to the UGC, Government of India, New Delhi, for financial assistance in the form of the award of a Meritorious Research Fellowship. ASR thanks the School of Chemistry, UGC Networking Resource Centre, University of Hyderabad, for use of the single-crystal X-ray Diffraction facility, and also sincerely thanks Dr G. Bhargavi, School of Chemistry, University of Hyderabad, for her guidance.

References

First citationBeraldo, H. & Gambinob, D. (2004). Mini Rev. Med. Chem. 4, 31–39.  Web of Science PubMed CAS Google Scholar
First citationBeraldo, H., Lima, R., Teixeira, L. R., Moura, A. A. & West, D. X. (2001). J. Mol. Struct. 559, 99–106.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMazlan, N. A., Ravoof, T. B. S., Tiekink, E. R. T., Tahir, M. I. M., Veerakumarasivam, A. & Crouse, K. A. (2014). Transition Met. Chem. 39, 633–639.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSreekanth, A., Kala, U. L., Nayar, C. R. & Kurup, M. R. P. (2004). Polyhedron, 23, 41–47.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds