organic compounds
5,7-Dichloro-1H-indole-2,3-dione
aDepartment of Chemistry and Biochemistry, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA
*Correspondence e-mail: dmanke@umassd.edu
The title compound, C8H3Cl2NO2, has a single molecule in the that is close to planar, with the non-H atoms having a mean deviation from planarity of 0.035 Å. The molecules dimerize through two N—H⋯O hydrogen bonds. A weak intermolecular offset π–π interaction is also observed between the five- and six-membered rings, with a centroid–centroid separation of 3.8444 (16) Å.
Keywords: crystal structure; isatins; hydrogen bonding.
CCDC reference: 1506169
Structure description
Herein we report the ). There is a single, near-planar molecule in the that has a mean deviation from planarity for the non-H atoms of 0.035 Å. The bond distances and angles observed for the title compound are consistent with those observed in 1H-indole-2,3-dione (Goldschmidt & Llewellyn, 1950).
of 5,7-dichloroisatin (Fig. 1In the crystal, the molecules dimerize through N1—H1⋯O1 hydrogen bonds (Table 1) and these dimers are stacked along the b-axis direction by a weak π–π contact between the N1/C1–C3/C8 and C3–C8 rings with an inter-centroid distance of 3.8444 (16) Å (Fig. 2). The monosubstituted 5-chloroisatin and 7-chloroisatin demonstrate C—H⋯O interactions in the solid state (Sun & Cai, 2010; Wei et al., 2010), while no such interaction is observed for the 5,7-disubstituted complex reported here. The 4,7-dichloro isomer of the title compound dimerizes through N—H⋯O hydrogen bonds in a similar fashion to 5,7-dichloroisatin, but unlike the title compound, it also has C—H⋯O as well as π–π interactions (Golen & Manke, 2016). The 4,6-dichloro isomer only has N—H⋯O intermolecular interactions, though these form chains rather than dimers (Mastrolia et al., 2016).
Synthesis and crystallization
A commercial sample (Matrix Scientific) of 5,7-dichloroisatin was recrystallized from the slow evaporation of an acetone solution to yield orange blocks suitable for single-crystal diffraction analysis.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1506169
10.1107/S2414314616015108/sj4060sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2414314616015108/sj4060Isup2.hkl
Supporting information file. DOI: 10.1107/S2414314616015108/sj4060Isup3.cml
Data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).C8H3Cl2NO2 | F(000) = 432 |
Mr = 216.01 | Dx = 1.815 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54178 Å |
Hall symbol: -P 2ybc | Cell parameters from 6137 reflections |
a = 11.0789 (17) Å | θ = 4.2–70.4° |
b = 4.9866 (8) Å | µ = 7.08 mm−1 |
c = 15.049 (2) Å | T = 120 K |
β = 108.041 (7)° | Block, orange |
V = 790.5 (2) Å3 | 0.24 × 0.16 × 0.05 mm |
Z = 4 |
Bruker D8 Venture CMOS diffractometer | 1496 independent reflections |
Radiation source: Cu | 1356 reflections with I > 2σ(I) |
HELIOS MX monochromator | Rint = 0.059 |
φ and ω scans | θmax = 70.4°, θmin = 4.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | h = −13→13 |
Tmin = 0.288, Tmax = 0.468 | k = −5→6 |
10168 measured reflections | l = −18→18 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.035 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.086 | w = 1/[σ2(Fo2) + (0.0359P)2 + 0.9613P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max < 0.001 |
1496 reflections | Δρmax = 0.31 e Å−3 |
121 parameters | Δρmin = −0.34 e Å−3 |
1 restraint |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.97776 (5) | 0.75293 (13) | 0.90244 (4) | 0.02880 (18) | |
Cl2 | 0.74527 (5) | 0.65413 (12) | 0.53083 (4) | 0.02535 (17) | |
O1 | 0.46893 (16) | −0.1568 (3) | 0.60119 (11) | 0.0238 (4) | |
O2 | 0.60384 (15) | −0.1147 (3) | 0.80286 (11) | 0.0220 (4) | |
N1 | 0.59860 (19) | 0.2023 (4) | 0.59574 (13) | 0.0199 (4) | |
H1 | 0.582 (3) | 0.213 (6) | 0.5359 (12) | 0.024* | |
C1 | 0.5484 (2) | 0.0101 (5) | 0.63789 (15) | 0.0196 (5) | |
C2 | 0.6184 (2) | 0.0373 (5) | 0.74484 (15) | 0.0191 (5) | |
C3 | 0.7063 (2) | 0.2649 (5) | 0.75254 (15) | 0.0186 (5) | |
C4 | 0.7939 (2) | 0.3839 (5) | 0.82884 (16) | 0.0207 (5) | |
H4 | 0.8036 | 0.3267 | 0.8909 | 0.025* | |
C5 | 0.8670 (2) | 0.5915 (5) | 0.81031 (16) | 0.0210 (5) | |
C6 | 0.8533 (2) | 0.6781 (5) | 0.71998 (16) | 0.0226 (5) | |
H6 | 0.9047 | 0.8202 | 0.7098 | 0.027* | |
C7 | 0.7645 (2) | 0.5570 (5) | 0.64436 (15) | 0.0203 (5) | |
C8 | 0.6913 (2) | 0.3505 (5) | 0.66125 (15) | 0.0184 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0247 (3) | 0.0351 (4) | 0.0249 (3) | −0.0087 (2) | 0.0053 (2) | −0.0035 (2) |
Cl2 | 0.0295 (3) | 0.0284 (3) | 0.0214 (3) | 0.0001 (2) | 0.0126 (2) | 0.0049 (2) |
O1 | 0.0273 (9) | 0.0232 (9) | 0.0213 (8) | −0.0055 (7) | 0.0082 (7) | −0.0017 (7) |
O2 | 0.0268 (8) | 0.0213 (9) | 0.0203 (8) | 0.0003 (7) | 0.0109 (7) | 0.0018 (7) |
N1 | 0.0227 (10) | 0.0218 (11) | 0.0164 (9) | −0.0020 (8) | 0.0079 (8) | 0.0001 (8) |
C1 | 0.0206 (11) | 0.0201 (12) | 0.0203 (11) | 0.0016 (9) | 0.0096 (9) | −0.0003 (9) |
C2 | 0.0186 (10) | 0.0199 (12) | 0.0207 (11) | 0.0019 (9) | 0.0090 (9) | −0.0003 (9) |
C3 | 0.0205 (11) | 0.0177 (11) | 0.0191 (11) | 0.0020 (9) | 0.0083 (9) | 0.0010 (8) |
C4 | 0.0200 (11) | 0.0229 (12) | 0.0208 (11) | 0.0014 (9) | 0.0086 (9) | 0.0005 (9) |
C5 | 0.0166 (10) | 0.0241 (13) | 0.0221 (11) | 0.0004 (9) | 0.0058 (9) | −0.0024 (9) |
C6 | 0.0207 (11) | 0.0227 (13) | 0.0277 (12) | −0.0002 (9) | 0.0124 (10) | 0.0000 (10) |
C7 | 0.0206 (11) | 0.0228 (12) | 0.0200 (10) | 0.0035 (9) | 0.0102 (9) | 0.0030 (9) |
C8 | 0.0173 (10) | 0.0192 (11) | 0.0199 (10) | 0.0028 (9) | 0.0077 (9) | −0.0017 (9) |
Cl1—C5 | 1.738 (2) | C3—C4 | 1.386 (3) |
Cl2—C7 | 1.724 (2) | C3—C8 | 1.399 (3) |
O1—C1 | 1.213 (3) | C4—H4 | 0.9500 |
O2—C2 | 1.204 (3) | C4—C5 | 1.395 (3) |
N1—H1 | 0.864 (17) | C5—C6 | 1.389 (3) |
N1—C1 | 1.360 (3) | C6—H6 | 0.9500 |
N1—C8 | 1.395 (3) | C6—C7 | 1.391 (3) |
C1—C2 | 1.561 (3) | C7—C8 | 1.382 (3) |
C2—C3 | 1.477 (3) | ||
C1—N1—H1 | 123.2 (19) | C5—C4—H4 | 121.5 |
C1—N1—C8 | 111.21 (19) | C4—C5—Cl1 | 119.63 (17) |
C8—N1—H1 | 125.0 (19) | C6—C5—Cl1 | 118.20 (18) |
O1—C1—N1 | 128.0 (2) | C6—C5—C4 | 122.2 (2) |
O1—C1—C2 | 126.0 (2) | C5—C6—H6 | 120.0 |
N1—C1—C2 | 105.96 (19) | C5—C6—C7 | 120.0 (2) |
O2—C2—C1 | 123.9 (2) | C7—C6—H6 | 120.0 |
O2—C2—C3 | 131.3 (2) | C6—C7—Cl2 | 121.84 (18) |
C3—C2—C1 | 104.65 (18) | C8—C7—Cl2 | 119.48 (18) |
C4—C3—C2 | 132.0 (2) | C8—C7—C6 | 118.7 (2) |
C4—C3—C8 | 121.5 (2) | N1—C8—C3 | 111.7 (2) |
C8—C3—C2 | 106.41 (19) | C7—C8—N1 | 127.6 (2) |
C3—C4—H4 | 121.5 | C7—C8—C3 | 120.7 (2) |
C3—C4—C5 | 116.9 (2) | ||
Cl1—C5—C6—C7 | −179.08 (18) | C2—C3—C8—N1 | 1.7 (3) |
Cl2—C7—C8—N1 | −0.3 (3) | C2—C3—C8—C7 | −177.7 (2) |
Cl2—C7—C8—C3 | 179.01 (17) | C3—C4—C5—Cl1 | 179.36 (17) |
O1—C1—C2—O2 | 3.1 (4) | C3—C4—C5—C6 | 0.3 (3) |
O1—C1—C2—C3 | 178.8 (2) | C4—C3—C8—N1 | 179.8 (2) |
O2—C2—C3—C4 | −4.3 (4) | C4—C3—C8—C7 | 0.3 (3) |
O2—C2—C3—C8 | 173.5 (2) | C4—C5—C6—C7 | 0.0 (4) |
N1—C1—C2—O2 | −174.5 (2) | C5—C6—C7—Cl2 | −179.15 (18) |
N1—C1—C2—C3 | 1.2 (2) | C5—C6—C7—C8 | −0.1 (3) |
C1—N1—C8—C3 | −1.0 (3) | C6—C7—C8—N1 | −179.4 (2) |
C1—N1—C8—C7 | 178.4 (2) | C6—C7—C8—C3 | 0.0 (3) |
C1—C2—C3—C4 | −179.5 (2) | C8—N1—C1—O1 | −177.7 (2) |
C1—C2—C3—C8 | −1.7 (2) | C8—N1—C1—C2 | −0.2 (2) |
C2—C3—C4—C5 | 177.0 (2) | C8—C3—C4—C5 | −0.5 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1i | 0.86 (2) | 1.98 (2) | 2.832 (2) | 167 (3) |
Symmetry code: (i) −x+1, −y, −z+1. |
Acknowledgements
We greatly acknowledge support from the National Science Foundation (CHE-1429086).
References
Bruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Goldschmidt, G. H. & Llewellyn, F. J. (1950). Acta Cryst. 3, 294–305. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Golen, J. A. & Manke, D. R. (2016). IUCrData, 1, x161485. Google Scholar
Mastrolia, R. J., Golen, J. A. & Manke, D. R. (2016). IUCrData, 1, x160695. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sun, J. & Cai, Z.-S. (2010). Acta Cryst. E66, o25. Web of Science CSD CrossRef IUCr Journals Google Scholar
Wei, W.-B., Tian, S., Zhou, H., Sun, J. & Wang, H.-B. (2010). Acta Cryst. E66, o3024. CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.