organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

5,7-Di­chloro-1H-indole-2,3-dione

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry and Biochemistry, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA
*Correspondence e-mail: dmanke@umassd.edu

Edited by J. Simpson, University of Otago, New Zealand (Received 23 September 2016; accepted 24 September 2016; online 30 September 2016)

The title compound, C8H3Cl2NO2, has a single mol­ecule in the asymmetric unit that is close to planar, with the non-H atoms having a mean deviation from planarity of 0.035 Å. The mol­ecules dimerize through two N—H⋯O hydrogen bonds. A weak inter­molecular offset ππ inter­action is also observed between the five- and six-membered rings, with a centroid–centroid separation of 3.8444 (16) Å.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Herein we report the crystal structure of 5,7-di­chloro­isatin (Fig. 1[link]). There is a single, near-planar mol­ecule in the asymmetric unit that has a mean deviation from planarity for the non-H atoms of 0.035 Å. The bond distances and angles observed for the title compound are consistent with those observed in 1H-indole-2,3-dione (Goldschmidt & Llewellyn, 1950[Goldschmidt, G. H. & Llewellyn, F. J. (1950). Acta Cryst. 3, 294-305.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radius.

In the crystal, the mol­ecules dimerize through N1—H1⋯O1 hydrogen bonds (Table 1[link]) and these dimers are stacked along the b-axis direction by a weak ππ contact between the N1/C1–C3/C8 and C3–C8 rings with an inter-centroid distance of 3.8444 (16) Å (Fig. 2[link]). The monosubstituted 5-chloro­isatin and 7-chloro­isatin demonstrate C—H⋯O inter­actions in the solid state (Sun & Cai, 2010[Sun, J. & Cai, Z.-S. (2010). Acta Cryst. E66, o25.]; Wei et al., 2010[Wei, W.-B., Tian, S., Zhou, H., Sun, J. & Wang, H.-B. (2010). Acta Cryst. E66, o3024.]), while no such inter­action is observed for the 5,7-disubstituted complex reported here. The 4,7-di­chloro isomer of the title compound dimerizes through N—H⋯O hydrogen bonds in a similar fashion to 5,7-di­chloro­isatin, but unlike the title compound, it also has C—H⋯O as well as ππ inter­actions (Golen & Manke, 2016[Golen, J. A. & Manke, D. R. (2016). IUCrData, 1, x161485.]). The 4,6-di­chloro isomer only has N—H⋯O inter­molecular inter­actions, though these form chains rather than dimers (Mastrolia et al., 2016[Mastrolia, R. J., Golen, J. A. & Manke, D. R. (2016). IUCrData, 1, x160695.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 (2) 1.98 (2) 2.832 (2) 167 (3)
Symmetry code: (i) -x+1, -y, -z+1.
[Figure 2]
Figure 2
The mol­ecular packing of the title compound along the b axis, with hydrogen bonds shown as dashed lines.

Synthesis and crystallization

A commercial sample (Matrix Scientific) of 5,7-di­chloro­isatin was recrystallized from the slow evaporation of an acetone solution to yield orange blocks suitable for single-crystal diffraction analysis.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C8H3Cl2NO2
Mr 216.01
Crystal system, space group Monoclinic, P21/c
Temperature (K) 120
a, b, c (Å) 11.0789 (17), 4.9866 (8), 15.049 (2)
β (°) 108.041 (7)
V3) 790.5 (2)
Z 4
Radiation type Cu Kα
μ (mm−1) 7.08
Crystal size (mm) 0.24 × 0.16 × 0.05
 
Data collection
Diffractometer Bruker D8 Venture CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.288, 0.468
No. of measured, independent and observed [I > 2σ(I)] reflections 10168, 1496, 1356
Rint 0.059
(sin θ/λ)max−1) 0.611
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.086, 1.06
No. of reflections 1496
No. of parameters 121
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.31, −0.34
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

5,7-Dichloro-1H-indole-2,3-dione top
Crystal data top
C8H3Cl2NO2F(000) = 432
Mr = 216.01Dx = 1.815 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 6137 reflections
a = 11.0789 (17) Åθ = 4.2–70.4°
b = 4.9866 (8) ŵ = 7.08 mm1
c = 15.049 (2) ÅT = 120 K
β = 108.041 (7)°Block, orange
V = 790.5 (2) Å30.24 × 0.16 × 0.05 mm
Z = 4
Data collection top
Bruker D8 Venture CMOS
diffractometer
1496 independent reflections
Radiation source: Cu1356 reflections with I > 2σ(I)
HELIOS MX monochromatorRint = 0.059
φ and ω scansθmax = 70.4°, θmin = 4.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 1313
Tmin = 0.288, Tmax = 0.468k = 56
10168 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.0359P)2 + 0.9613P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
1496 reflectionsΔρmax = 0.31 e Å3
121 parametersΔρmin = 0.34 e Å3
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.97776 (5)0.75293 (13)0.90244 (4)0.02880 (18)
Cl20.74527 (5)0.65413 (12)0.53083 (4)0.02535 (17)
O10.46893 (16)0.1568 (3)0.60119 (11)0.0238 (4)
O20.60384 (15)0.1147 (3)0.80286 (11)0.0220 (4)
N10.59860 (19)0.2023 (4)0.59574 (13)0.0199 (4)
H10.582 (3)0.213 (6)0.5359 (12)0.024*
C10.5484 (2)0.0101 (5)0.63789 (15)0.0196 (5)
C20.6184 (2)0.0373 (5)0.74484 (15)0.0191 (5)
C30.7063 (2)0.2649 (5)0.75254 (15)0.0186 (5)
C40.7939 (2)0.3839 (5)0.82884 (16)0.0207 (5)
H40.80360.32670.89090.025*
C50.8670 (2)0.5915 (5)0.81031 (16)0.0210 (5)
C60.8533 (2)0.6781 (5)0.71998 (16)0.0226 (5)
H60.90470.82020.70980.027*
C70.7645 (2)0.5570 (5)0.64436 (15)0.0203 (5)
C80.6913 (2)0.3505 (5)0.66125 (15)0.0184 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0247 (3)0.0351 (4)0.0249 (3)0.0087 (2)0.0053 (2)0.0035 (2)
Cl20.0295 (3)0.0284 (3)0.0214 (3)0.0001 (2)0.0126 (2)0.0049 (2)
O10.0273 (9)0.0232 (9)0.0213 (8)0.0055 (7)0.0082 (7)0.0017 (7)
O20.0268 (8)0.0213 (9)0.0203 (8)0.0003 (7)0.0109 (7)0.0018 (7)
N10.0227 (10)0.0218 (11)0.0164 (9)0.0020 (8)0.0079 (8)0.0001 (8)
C10.0206 (11)0.0201 (12)0.0203 (11)0.0016 (9)0.0096 (9)0.0003 (9)
C20.0186 (10)0.0199 (12)0.0207 (11)0.0019 (9)0.0090 (9)0.0003 (9)
C30.0205 (11)0.0177 (11)0.0191 (11)0.0020 (9)0.0083 (9)0.0010 (8)
C40.0200 (11)0.0229 (12)0.0208 (11)0.0014 (9)0.0086 (9)0.0005 (9)
C50.0166 (10)0.0241 (13)0.0221 (11)0.0004 (9)0.0058 (9)0.0024 (9)
C60.0207 (11)0.0227 (13)0.0277 (12)0.0002 (9)0.0124 (10)0.0000 (10)
C70.0206 (11)0.0228 (12)0.0200 (10)0.0035 (9)0.0102 (9)0.0030 (9)
C80.0173 (10)0.0192 (11)0.0199 (10)0.0028 (9)0.0077 (9)0.0017 (9)
Geometric parameters (Å, º) top
Cl1—C51.738 (2)C3—C41.386 (3)
Cl2—C71.724 (2)C3—C81.399 (3)
O1—C11.213 (3)C4—H40.9500
O2—C21.204 (3)C4—C51.395 (3)
N1—H10.864 (17)C5—C61.389 (3)
N1—C11.360 (3)C6—H60.9500
N1—C81.395 (3)C6—C71.391 (3)
C1—C21.561 (3)C7—C81.382 (3)
C2—C31.477 (3)
C1—N1—H1123.2 (19)C5—C4—H4121.5
C1—N1—C8111.21 (19)C4—C5—Cl1119.63 (17)
C8—N1—H1125.0 (19)C6—C5—Cl1118.20 (18)
O1—C1—N1128.0 (2)C6—C5—C4122.2 (2)
O1—C1—C2126.0 (2)C5—C6—H6120.0
N1—C1—C2105.96 (19)C5—C6—C7120.0 (2)
O2—C2—C1123.9 (2)C7—C6—H6120.0
O2—C2—C3131.3 (2)C6—C7—Cl2121.84 (18)
C3—C2—C1104.65 (18)C8—C7—Cl2119.48 (18)
C4—C3—C2132.0 (2)C8—C7—C6118.7 (2)
C4—C3—C8121.5 (2)N1—C8—C3111.7 (2)
C8—C3—C2106.41 (19)C7—C8—N1127.6 (2)
C3—C4—H4121.5C7—C8—C3120.7 (2)
C3—C4—C5116.9 (2)
Cl1—C5—C6—C7179.08 (18)C2—C3—C8—N11.7 (3)
Cl2—C7—C8—N10.3 (3)C2—C3—C8—C7177.7 (2)
Cl2—C7—C8—C3179.01 (17)C3—C4—C5—Cl1179.36 (17)
O1—C1—C2—O23.1 (4)C3—C4—C5—C60.3 (3)
O1—C1—C2—C3178.8 (2)C4—C3—C8—N1179.8 (2)
O2—C2—C3—C44.3 (4)C4—C3—C8—C70.3 (3)
O2—C2—C3—C8173.5 (2)C4—C5—C6—C70.0 (4)
N1—C1—C2—O2174.5 (2)C5—C6—C7—Cl2179.15 (18)
N1—C1—C2—C31.2 (2)C5—C6—C7—C80.1 (3)
C1—N1—C8—C31.0 (3)C6—C7—C8—N1179.4 (2)
C1—N1—C8—C7178.4 (2)C6—C7—C8—C30.0 (3)
C1—C2—C3—C4179.5 (2)C8—N1—C1—O1177.7 (2)
C1—C2—C3—C81.7 (2)C8—N1—C1—C20.2 (2)
C2—C3—C4—C5177.0 (2)C8—C3—C4—C50.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.86 (2)1.98 (2)2.832 (2)167 (3)
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

We greatly acknowledge support from the National Science Foundation (CHE-1429086).

References

First citationBruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGoldschmidt, G. H. & Llewellyn, F. J. (1950). Acta Cryst. 3, 294–305.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationGolen, J. A. & Manke, D. R. (2016). IUCrData, 1, x161485.  Google Scholar
First citationMastrolia, R. J., Golen, J. A. & Manke, D. R. (2016). IUCrData, 1, x160695.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSun, J. & Cai, Z.-S. (2010). Acta Cryst. E66, o25.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWei, W.-B., Tian, S., Zhou, H., Sun, J. & Wang, H.-B. (2010). Acta Cryst. E66, o3024.  CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds