organic compounds
(E)-2-[(2,3-Dibromoallyl)sulfanyl]-1-methyl-1H-imidazol-3-ium bromide
aUniversity of Innsbruck, Faculty of Chemistry and Pharmacy, Innrain 80, 6020 Innsbruck, Austria
*Correspondence e-mail: gerhard.laus@uibk.ac.at
The title salt, C7H9Br2N2S+·Br−, was obtained from methimazole (1-methyl-3H-imidazole-2-thione) by S-allylation using 1,2,3-tribromopropene. A positional disorder of the bromine atoms at the allyl chain was observed, with each Br atom equally disordered over two positions. N—H⋯Br and C—H⋯Br interactions were identified.
Keywords: crystal structure; imidazole; methimazole; S-allylation.
CCDC reference: 1505734
Structure description
The imidazolium ring in the title compound is almost perfectly planar [maximum deviation = 0.004 (2) Å for N2, and the S-allyl chain is positioned perpendicularly to the ring system, making a dihedral angle of 88.95 (13)° (Fig. 1). Atom C5 is displaced from the ring plane by 1.481 (2) Å. The cation acts as a multiple donor of hydrogen-bond contacts. Each bromide ion accepts four hydrogen bonds from four neighbouring cations (Table 1). A classical N1—H⋯Br3 hydrogen bond and a quite short C3—H⋯Br3 contact are observed. The hydrogen atoms of the allyl group are engaged in C5—H⋯Br and C7—H⋯Br interactions (Fig. 2).
A related structure without bromine atoms at the allyl chain has been reported (Gaitor et al., 2015).
Synthesis and crystallization
1,2,3-Tribromopropene (0.50 g, 1.8 mmol; Kodomari et al., 1989) was added to a solution of methimazole (0.25 g, 2.2 mmol) in CH2Cl2 (3 ml). The mixture was stirred at room temperature for 18 h. The colorless product was collected by filtration, washed with CH2Cl2 and dried under reduced pressure (0.47 g, 67%), m.p. 442 K. Suitable crystals were obtained by slow evaporation of a solution in EtOH. The PXRD (Mo Kα radiation) of the bulk material was identical to the one calculated from the single-crystal diffraction data (Fig. 3), indicating phase purity. 1H NMR (300 MHz, DMSO-d6): δ 3.88 (s, 3H), 4.22 (s, 2H), 7.06 (s, 1H), 7.87 (d, J = 1.6 Hz, 1H), 7.97 (d, J = 1.6 Hz, 1H) p.p.m. 13C NMR (75 MHz, DMSO-d6): δ 35.4, 41.9, 108.4, 119.6, 122.0, 126.3, 136.7 p.p.m. IR (neat): ν 3157 (w), 3071 (w), 3025 (m), 2890 (w), 2779 (m), 1572 (m), 1480 (m), 1293 (m), 1018 (m), 907 (m), 835 (m), 770 (s), 698 (m), 673 (m) cm−1.
Refinement
Crystal data, data collection and structure . Atoms Br1 and Br2 showed extreme temperature factors and were split over two positions with a 1:1 ratio for each.
details are summarized in Table 2
|
Structural data
CCDC reference: 1505734
10.1107/S2414314616014991/sj4057sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2414314616014991/sj4057Isup2.hkl
Supporting information file. DOI: 10.1107/S2414314616014991/sj4057Isup3.mol
Supporting information file. DOI: 10.1107/S2414314616014991/sj4057Isup4.cml
Data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: Mercury (Macrae et al., 2008).C7H9Br2N2S+·Br− | Dx = 2.147 Mg m−3 |
Mr = 392.95 | Melting point: 442 K |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 7.2101 (3) Å | Cell parameters from 9903 reflections |
b = 8.2105 (3) Å | θ = 2.7–26.7° |
c = 20.5363 (8) Å | µ = 10.09 mm−1 |
β = 90.619 (1)° | T = 203 K |
V = 1215.65 (8) Å3 | Prism, colourless |
Z = 4 | 0.18 × 0.14 × 0.12 mm |
F(000) = 744 |
Bruker D8 QUEST PHOTON 100 diffractometer | 2513 independent reflections |
Radiation source: Incoatec Microfocus | 2228 reflections with I > 2σ(I) |
Multi layered optics monochromator | Rint = 0.043 |
Detector resolution: 10.4 pixels mm-1 | θmax = 26.5°, θmin = 2.7° |
φ and ω scans | h = −9→8 |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | k = −10→10 |
Tmin = 0.208, Tmax = 0.333 | l = −25→24 |
22243 measured reflections |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.021 | w = 1/[σ2(Fo2) + (0.0234P)2 + 0.5418P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.052 | (Δ/σ)max = 0.001 |
S = 1.04 | Δρmax = 0.67 e Å−3 |
2513 reflections | Δρmin = −0.50 e Å−3 |
142 parameters | Extinction correction: SHELXL2014 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
1 restraint | Extinction coefficient: 0.0054 (4) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Hydrogen at N1 found and refined isotropically with bond restraints (d=87 pm). The two Br-Atoms Br1 and shows extremly cigarlikes temperature factors and were split in two position with ratio of 1:1 for each. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
S1 | 0.17108 (7) | 0.46260 (6) | 0.42687 (2) | 0.03705 (13) | |
N1 | 0.5433 (3) | 0.3906 (2) | 0.42723 (9) | 0.0423 (4) | |
H1 | 0.588 (3) | 0.487 (2) | 0.4262 (12) | 0.047 (7)* | |
N2 | 0.3706 (3) | 0.1773 (2) | 0.42235 (9) | 0.0424 (4) | |
C1 | 0.3676 (3) | 0.3405 (2) | 0.42357 (9) | 0.0355 (5) | |
C2 | 0.6586 (4) | 0.2590 (3) | 0.42872 (13) | 0.0546 (7) | |
H2 | 0.7902 | 0.2612 | 0.4312 | 0.066* | |
C3 | 0.5518 (4) | 0.1265 (3) | 0.42602 (12) | 0.0542 (6) | |
H3 | 0.5935 | 0.0167 | 0.4266 | 0.065* | |
C4 | 0.2091 (4) | 0.0698 (3) | 0.42008 (14) | 0.0593 (7) | |
H4A | 0.1409 | 0.0790 | 0.4609 | 0.089* | |
H4B | 0.2501 | −0.0430 | 0.4142 | 0.089* | |
H4C | 0.1281 | 0.1013 | 0.3836 | 0.089* | |
C5 | 0.1903 (3) | 0.5685 (3) | 0.34904 (10) | 0.0387 (5) | |
H5A | 0.0911 | 0.6516 | 0.3462 | 0.046* | |
H5B | 0.3107 | 0.6263 | 0.3482 | 0.046* | |
C6 | 0.1770 (3) | 0.4618 (3) | 0.29077 (10) | 0.0391 (5) | |
C7 | 0.2959 (3) | 0.4451 (3) | 0.24341 (11) | 0.0482 (6) | |
H7 | 0.2764 | 0.3655 | 0.2105 | 0.058* | |
Br1 | −0.0306 (4) | 0.3200 (3) | 0.28492 (17) | 0.0617 (5) | 0.5 |
Br2 | 0.5085 (3) | 0.58268 (18) | 0.24163 (10) | 0.0641 (3) | 0.5 |
Br1A | −0.0598 (5) | 0.3638 (3) | 0.27945 (17) | 0.0629 (5) | 0.5 |
Br2A | 0.5379 (3) | 0.5213 (2) | 0.24649 (11) | 0.0788 (5) | 0.5 |
Br3 | 0.76128 (4) | 0.73127 (3) | 0.41814 (2) | 0.04785 (10) |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0432 (3) | 0.0407 (3) | 0.0273 (3) | 0.0116 (2) | 0.0008 (2) | −0.0028 (2) |
N1 | 0.0437 (11) | 0.0469 (11) | 0.0364 (10) | 0.0067 (9) | 0.0020 (8) | 0.0030 (8) |
N2 | 0.0560 (12) | 0.0365 (9) | 0.0346 (10) | 0.0114 (9) | 0.0038 (8) | −0.0037 (8) |
C1 | 0.0436 (12) | 0.0391 (11) | 0.0238 (10) | 0.0077 (9) | 0.0006 (8) | −0.0013 (8) |
C2 | 0.0477 (14) | 0.0711 (18) | 0.0452 (14) | 0.0241 (13) | 0.0046 (11) | 0.0029 (12) |
C3 | 0.0664 (16) | 0.0520 (14) | 0.0442 (14) | 0.0275 (13) | 0.0067 (11) | 0.0003 (11) |
C4 | 0.0742 (18) | 0.0436 (14) | 0.0601 (17) | −0.0037 (12) | 0.0025 (13) | −0.0073 (11) |
C5 | 0.0520 (13) | 0.0351 (11) | 0.0289 (10) | 0.0094 (9) | −0.0022 (9) | −0.0022 (8) |
C6 | 0.0468 (12) | 0.0402 (11) | 0.0301 (11) | 0.0079 (9) | −0.0058 (9) | −0.0013 (9) |
C7 | 0.0531 (14) | 0.0583 (14) | 0.0332 (12) | 0.0081 (11) | −0.0031 (10) | −0.0075 (10) |
Br1 | 0.0635 (11) | 0.0797 (12) | 0.0418 (5) | −0.0244 (8) | −0.0079 (7) | −0.0081 (8) |
Br2 | 0.0551 (7) | 0.0919 (9) | 0.0454 (4) | −0.0165 (6) | 0.0079 (4) | −0.0053 (6) |
Br1A | 0.0572 (7) | 0.0840 (13) | 0.0472 (9) | −0.0074 (7) | −0.0048 (5) | −0.0183 (9) |
Br2A | 0.0574 (6) | 0.1289 (14) | 0.0501 (6) | −0.0017 (8) | 0.0080 (4) | −0.0115 (9) |
Br3 | 0.07191 (18) | 0.03746 (13) | 0.03436 (14) | 0.01620 (10) | 0.00936 (10) | 0.00275 (9) |
S1—C1 | 1.738 (2) | C4—H4B | 0.9800 |
S1—C5 | 1.826 (2) | C4—H4C | 0.9800 |
N1—C1 | 1.333 (3) | C5—C6 | 1.485 (3) |
N1—C2 | 1.364 (3) | C5—H5A | 0.9900 |
N1—H1 | 0.852 (16) | C5—H5B | 0.9900 |
N2—C1 | 1.340 (3) | C6—C7 | 1.311 (3) |
N2—C3 | 1.372 (3) | C6—Br1A | 1.899 (4) |
N2—C4 | 1.462 (3) | C6—Br1 | 1.899 (4) |
C2—C3 | 1.334 (4) | C7—Br2A | 1.854 (3) |
C2—H2 | 0.9500 | C7—Br2 | 1.905 (3) |
C3—H3 | 0.9500 | C7—H7 | 0.9500 |
C4—H4A | 0.9800 | ||
C1—S1—C5 | 99.84 (10) | N2—C4—H4C | 109.5 |
C1—N1—C2 | 109.6 (2) | H4A—C4—H4C | 109.5 |
C1—N1—H1 | 130.1 (17) | H4B—C4—H4C | 109.5 |
C2—N1—H1 | 120.2 (17) | C6—C5—S1 | 114.81 (15) |
C1—N2—C3 | 108.6 (2) | C6—C5—H5A | 108.6 |
C1—N2—C4 | 126.3 (2) | S1—C5—H5A | 108.6 |
C3—N2—C4 | 125.1 (2) | C6—C5—H5B | 108.6 |
N1—C1—N2 | 107.10 (18) | S1—C5—H5B | 108.6 |
N1—C1—S1 | 126.47 (16) | H5A—C5—H5B | 107.5 |
N2—C1—S1 | 126.21 (17) | C7—C6—C5 | 128.5 (2) |
C3—C2—N1 | 107.1 (2) | C7—C6—Br1A | 117.3 (2) |
C3—C2—H2 | 126.5 | C5—C6—Br1A | 113.50 (19) |
N1—C2—H2 | 126.5 | C7—C6—Br1 | 114.2 (2) |
C2—C3—N2 | 107.6 (2) | C5—C6—Br1 | 117.17 (19) |
C2—C3—H3 | 126.2 | C6—C7—Br2A | 124.2 (2) |
N2—C3—H3 | 126.2 | C6—C7—Br2 | 119.02 (19) |
N2—C4—H4A | 109.5 | C6—C7—H7 | 120.5 |
N2—C4—H4B | 109.5 | Br2—C7—H7 | 120.5 |
H4A—C4—H4B | 109.5 | ||
C2—N1—C1—N2 | −0.3 (2) | C1—N2—C3—C2 | −0.7 (3) |
C2—N1—C1—S1 | 174.60 (17) | C4—N2—C3—C2 | −178.5 (2) |
C3—N2—C1—N1 | 0.6 (2) | C1—S1—C5—C6 | 63.61 (18) |
C4—N2—C1—N1 | 178.4 (2) | S1—C5—C6—C7 | −123.8 (2) |
C3—N2—C1—S1 | −174.33 (16) | S1—C5—C6—Br1A | 66.0 (2) |
C4—N2—C1—S1 | 3.5 (3) | S1—C5—C6—Br1 | 52.2 (2) |
C5—S1—C1—N1 | 69.29 (19) | C5—C6—C7—Br2A | 13.5 (4) |
C5—S1—C1—N2 | −116.71 (18) | Br1A—C6—C7—Br2A | −176.56 (15) |
C1—N1—C2—C3 | −0.1 (3) | C5—C6—C7—Br2 | −5.4 (3) |
N1—C2—C3—N2 | 0.5 (3) | Br1—C6—C7—Br2 | 178.56 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···Br3 | 0.85 (2) | 2.37 (2) | 3.215 (2) | 170 (2) |
C3—H3···Br3i | 0.95 | 2.64 | 3.584 (3) | 170 |
C5—H5A···Br3ii | 0.99 | 2.89 | 3.669 (2) | 136 |
C7—H7···Br3iii | 0.95 | 2.87 | 3.772 (2) | 159 |
Symmetry codes: (i) x, y−1, z; (ii) x−1, y, z; (iii) −x+1, y−1/2, −z+1/2. |
Acknowledgements
The authors are grateful to Martin Lamb for the PXRD measurements.
References
Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gaitor, J. C., Zayas, M. S., Myrthil, D. J., White, F., Hendrich, J. M., Sykora, R. E., O'Brien, R. A., Reilly, J. T. & Mirjafari, A. (2015). Acta Cryst. E71, o1008–o1009. CrossRef IUCr Journals Google Scholar
Kodomari, M., Sakamoto, T. & Yoshitomi, S. (1989). Bull. Chem. Soc. Jpn, 62, 4053–4054. CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.