organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(E)-2-[(2,3-Di­bromo­all­yl)sulfan­yl]-1-methyl-1H-imidazol-3-ium bromide

CROSSMARK_Color_square_no_text.svg

aUniversity of Innsbruck, Faculty of Chemistry and Pharmacy, Innrain 80, 6020 Innsbruck, Austria
*Correspondence e-mail: gerhard.laus@uibk.ac.at

Edited by J. Simpson, University of Otago, New Zealand (Received 20 September 2016; accepted 22 September 2016; online 27 September 2016)

The title salt, C7H9Br2N2S+·Br, was obtained from methimazole (1-methyl-3H-imidazole-2-thione) by S-allyl­ation using 1,2,3-tri­bromo­propene. A positional disorder of the bromine atoms at the allyl chain was observed, with each Br atom equally disordered over two positions. N—H⋯Br and C—H⋯Br inter­actions were identified.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The imidazolium ring in the title compound is almost perfectly planar [maximum deviation = 0.004 (2) Å for N2, and the S-allyl chain is positioned perpendicularly to the ring system, making a dihedral angle of 88.95 (13)° (Fig. 1[link]). Atom C5 is displaced from the ring plane by 1.481 (2) Å. The cation acts as a multiple donor of hydrogen-bond contacts. Each bromide ion accepts four hydrogen bonds from four neighbouring cations (Table 1[link]). A classical N1—H⋯Br3 hydrogen bond and a quite short C3—H⋯Br3 contact are observed. The hydrogen atoms of the allyl group are engaged in C5—H⋯Br and C7—H⋯Br inter­actions (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Br3 0.85 (2) 2.37 (2) 3.215 (2) 170 (2)
C3—H3⋯Br3i 0.95 2.64 3.584 (3) 170
C5—H5A⋯Br3ii 0.99 2.89 3.669 (2) 136
C7—H7⋯Br3iii 0.95 2.87 3.772 (2) 159
Symmetry codes: (i) x, y-1, z; (ii) x-1, y, z; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the ion pair of the title compound, showing the atom labels and 50% probability displacement ellipsoids for the non-H atoms.
[Figure 2]
Figure 2
Crystal packing of the title compound, with hydrogen bonds drawn as dashed lines.

A related structure without bromine atoms at the allyl chain has been reported (Gaitor et al., 2015[Gaitor, J. C., Zayas, M. S., Myrthil, D. J., White, F., Hendrich, J. M., Sykora, R. E., O'Brien, R. A., Reilly, J. T. & Mirjafari, A. (2015). Acta Cryst. E71, o1008-o1009.]).

Synthesis and crystallization

1,2,3-Tri­bromo­propene (0.50 g, 1.8 mmol; Kodomari et al., 1989[Kodomari, M., Sakamoto, T. & Yoshitomi, S. (1989). Bull. Chem. Soc. Jpn, 62, 4053-4054.]) was added to a solution of methimazole (0.25 g, 2.2 mmol) in CH2Cl2 (3 ml). The mixture was stirred at room temperature for 18 h. The colorless product was collected by filtration, washed with CH2Cl2 and dried under reduced pressure (0.47 g, 67%), m.p. 442 K. Suitable crystals were obtained by slow evaporation of a solution in EtOH. The PXRD (Mo Kα radiation) of the bulk material was identical to the one calculated from the single-crystal diffraction data (Fig. 3[link]), indicating phase purity. 1H NMR (300 MHz, DMSO-d6): δ 3.88 (s, 3H), 4.22 (s, 2H), 7.06 (s, 1H), 7.87 (d, J = 1.6 Hz, 1H), 7.97 (d, J = 1.6 Hz, 1H) p.p.m. 13C NMR (75 MHz, DMSO-d6): δ 35.4, 41.9, 108.4, 119.6, 122.0, 126.3, 136.7 p.p.m. IR (neat): ν 3157 (w), 3071 (w), 3025 (m), 2890 (w), 2779 (m), 1572 (m), 1480 (m), 1293 (m), 1018 (m), 907 (m), 835 (m), 770 (s), 698 (m), 673 (m) cm−1.

[Figure 3]
Figure 3
Pawley fit (Rwp = 2.77%, Rexp  = 3.33%, Rp = 2.21%, goodness-of-fit = 0.83) of the PXRD data with a model calculated from the structural data of the single-crystal structure determination. Black dots indicate raw data, while the red line indicates the calculated model. The difference curve is shown in blue.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Atoms Br1 and Br2 showed extreme temperature factors and were split over two positions with a 1:1 ratio for each.

Table 2
Experimental details

Crystal data
Chemical formula C7H9Br2N2S+·Br
Mr 392.95
Crystal system, space group Monoclinic, P21/c
Temperature (K) 203
a, b, c (Å) 7.2101 (3), 8.2105 (3), 20.5363 (8)
β (°) 90.619 (1)
V3) 1215.65 (8)
Z 4
Radiation type Mo Kα
μ (mm−1) 10.09
Crystal size (mm) 0.18 × 0.14 × 0.12
 
Data collection
Diffractometer Bruker D8 QUEST PHOTON 100
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.208, 0.333
No. of measured, independent and observed [I > 2σ(I)] reflections 22243, 2513, 2228
Rint 0.043
(sin θ/λ)max−1) 0.628
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.052, 1.04
No. of reflections 2513
No. of parameters 142
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.67, −0.50
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: Mercury (Macrae et al., 2008).

(E)-2-[(2,3-Dibromoallyl)sulfanyl]-1-methyl-1H-imidazol-3-ium bromide top
Crystal data top
C7H9Br2N2S+·BrDx = 2.147 Mg m3
Mr = 392.95Melting point: 442 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.2101 (3) ÅCell parameters from 9903 reflections
b = 8.2105 (3) Åθ = 2.7–26.7°
c = 20.5363 (8) ŵ = 10.09 mm1
β = 90.619 (1)°T = 203 K
V = 1215.65 (8) Å3Prism, colourless
Z = 40.18 × 0.14 × 0.12 mm
F(000) = 744
Data collection top
Bruker D8 QUEST PHOTON 100
diffractometer
2513 independent reflections
Radiation source: Incoatec Microfocus2228 reflections with I > 2σ(I)
Multi layered optics monochromatorRint = 0.043
Detector resolution: 10.4 pixels mm-1θmax = 26.5°, θmin = 2.7°
φ and ω scansh = 98
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
k = 1010
Tmin = 0.208, Tmax = 0.333l = 2524
22243 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.021 w = 1/[σ2(Fo2) + (0.0234P)2 + 0.5418P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.052(Δ/σ)max = 0.001
S = 1.04Δρmax = 0.67 e Å3
2513 reflectionsΔρmin = 0.50 e Å3
142 parametersExtinction correction: SHELXL2014 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0054 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Hydrogen at N1 found and refined isotropically with bond restraints (d=87 pm). The two Br-Atoms Br1 and shows extremly cigarlikes temperature factors and were split in two position with ratio of 1:1 for each.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.17108 (7)0.46260 (6)0.42687 (2)0.03705 (13)
N10.5433 (3)0.3906 (2)0.42723 (9)0.0423 (4)
H10.588 (3)0.487 (2)0.4262 (12)0.047 (7)*
N20.3706 (3)0.1773 (2)0.42235 (9)0.0424 (4)
C10.3676 (3)0.3405 (2)0.42357 (9)0.0355 (5)
C20.6586 (4)0.2590 (3)0.42872 (13)0.0546 (7)
H20.79020.26120.43120.066*
C30.5518 (4)0.1265 (3)0.42602 (12)0.0542 (6)
H30.59350.01670.42660.065*
C40.2091 (4)0.0698 (3)0.42008 (14)0.0593 (7)
H4A0.14090.07900.46090.089*
H4B0.25010.04300.41420.089*
H4C0.12810.10130.38360.089*
C50.1903 (3)0.5685 (3)0.34904 (10)0.0387 (5)
H5A0.09110.65160.34620.046*
H5B0.31070.62630.34820.046*
C60.1770 (3)0.4618 (3)0.29077 (10)0.0391 (5)
C70.2959 (3)0.4451 (3)0.24341 (11)0.0482 (6)
H70.27640.36550.21050.058*
Br10.0306 (4)0.3200 (3)0.28492 (17)0.0617 (5)0.5
Br20.5085 (3)0.58268 (18)0.24163 (10)0.0641 (3)0.5
Br1A0.0598 (5)0.3638 (3)0.27945 (17)0.0629 (5)0.5
Br2A0.5379 (3)0.5213 (2)0.24649 (11)0.0788 (5)0.5
Br30.76128 (4)0.73127 (3)0.41814 (2)0.04785 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0432 (3)0.0407 (3)0.0273 (3)0.0116 (2)0.0008 (2)0.0028 (2)
N10.0437 (11)0.0469 (11)0.0364 (10)0.0067 (9)0.0020 (8)0.0030 (8)
N20.0560 (12)0.0365 (9)0.0346 (10)0.0114 (9)0.0038 (8)0.0037 (8)
C10.0436 (12)0.0391 (11)0.0238 (10)0.0077 (9)0.0006 (8)0.0013 (8)
C20.0477 (14)0.0711 (18)0.0452 (14)0.0241 (13)0.0046 (11)0.0029 (12)
C30.0664 (16)0.0520 (14)0.0442 (14)0.0275 (13)0.0067 (11)0.0003 (11)
C40.0742 (18)0.0436 (14)0.0601 (17)0.0037 (12)0.0025 (13)0.0073 (11)
C50.0520 (13)0.0351 (11)0.0289 (10)0.0094 (9)0.0022 (9)0.0022 (8)
C60.0468 (12)0.0402 (11)0.0301 (11)0.0079 (9)0.0058 (9)0.0013 (9)
C70.0531 (14)0.0583 (14)0.0332 (12)0.0081 (11)0.0031 (10)0.0075 (10)
Br10.0635 (11)0.0797 (12)0.0418 (5)0.0244 (8)0.0079 (7)0.0081 (8)
Br20.0551 (7)0.0919 (9)0.0454 (4)0.0165 (6)0.0079 (4)0.0053 (6)
Br1A0.0572 (7)0.0840 (13)0.0472 (9)0.0074 (7)0.0048 (5)0.0183 (9)
Br2A0.0574 (6)0.1289 (14)0.0501 (6)0.0017 (8)0.0080 (4)0.0115 (9)
Br30.07191 (18)0.03746 (13)0.03436 (14)0.01620 (10)0.00936 (10)0.00275 (9)
Geometric parameters (Å, º) top
S1—C11.738 (2)C4—H4B0.9800
S1—C51.826 (2)C4—H4C0.9800
N1—C11.333 (3)C5—C61.485 (3)
N1—C21.364 (3)C5—H5A0.9900
N1—H10.852 (16)C5—H5B0.9900
N2—C11.340 (3)C6—C71.311 (3)
N2—C31.372 (3)C6—Br1A1.899 (4)
N2—C41.462 (3)C6—Br11.899 (4)
C2—C31.334 (4)C7—Br2A1.854 (3)
C2—H20.9500C7—Br21.905 (3)
C3—H30.9500C7—H70.9500
C4—H4A0.9800
C1—S1—C599.84 (10)N2—C4—H4C109.5
C1—N1—C2109.6 (2)H4A—C4—H4C109.5
C1—N1—H1130.1 (17)H4B—C4—H4C109.5
C2—N1—H1120.2 (17)C6—C5—S1114.81 (15)
C1—N2—C3108.6 (2)C6—C5—H5A108.6
C1—N2—C4126.3 (2)S1—C5—H5A108.6
C3—N2—C4125.1 (2)C6—C5—H5B108.6
N1—C1—N2107.10 (18)S1—C5—H5B108.6
N1—C1—S1126.47 (16)H5A—C5—H5B107.5
N2—C1—S1126.21 (17)C7—C6—C5128.5 (2)
C3—C2—N1107.1 (2)C7—C6—Br1A117.3 (2)
C3—C2—H2126.5C5—C6—Br1A113.50 (19)
N1—C2—H2126.5C7—C6—Br1114.2 (2)
C2—C3—N2107.6 (2)C5—C6—Br1117.17 (19)
C2—C3—H3126.2C6—C7—Br2A124.2 (2)
N2—C3—H3126.2C6—C7—Br2119.02 (19)
N2—C4—H4A109.5C6—C7—H7120.5
N2—C4—H4B109.5Br2—C7—H7120.5
H4A—C4—H4B109.5
C2—N1—C1—N20.3 (2)C1—N2—C3—C20.7 (3)
C2—N1—C1—S1174.60 (17)C4—N2—C3—C2178.5 (2)
C3—N2—C1—N10.6 (2)C1—S1—C5—C663.61 (18)
C4—N2—C1—N1178.4 (2)S1—C5—C6—C7123.8 (2)
C3—N2—C1—S1174.33 (16)S1—C5—C6—Br1A66.0 (2)
C4—N2—C1—S13.5 (3)S1—C5—C6—Br152.2 (2)
C5—S1—C1—N169.29 (19)C5—C6—C7—Br2A13.5 (4)
C5—S1—C1—N2116.71 (18)Br1A—C6—C7—Br2A176.56 (15)
C1—N1—C2—C30.1 (3)C5—C6—C7—Br25.4 (3)
N1—C2—C3—N20.5 (3)Br1—C6—C7—Br2178.56 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Br30.85 (2)2.37 (2)3.215 (2)170 (2)
C3—H3···Br3i0.952.643.584 (3)170
C5—H5A···Br3ii0.992.893.669 (2)136
C7—H7···Br3iii0.952.873.772 (2)159
Symmetry codes: (i) x, y1, z; (ii) x1, y, z; (iii) x+1, y1/2, z+1/2.
 

Acknowledgements

The authors are grateful to Martin Lamb for the PXRD measurements.

References

First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGaitor, J. C., Zayas, M. S., Myrthil, D. J., White, F., Hendrich, J. M., Sykora, R. E., O'Brien, R. A., Reilly, J. T. & Mirjafari, A. (2015). Acta Cryst. E71, o1008–o1009.  CrossRef IUCr Journals Google Scholar
First citationKodomari, M., Sakamoto, T. & Yoshitomi, S. (1989). Bull. Chem. Soc. Jpn, 62, 4053–4054.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds