organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Butyl 2-[(azido­carbon­yl)amino]­benzoate

aLaboratoire de Chimie Organique et Analytique, University Sultan Moulay Slimane, Faculty of Science and Technology, BP 523, Beni-Mellal, Morocco, bUniv. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unite, de Catalyse et Chimie du Solide, F-59000 Lille, France, and cLaboratoire de Spectro-Chimie Applique et Environnement, University Sultan, Moulay Slimane, Faculty of Science and Technology, BP 523, Beni-Mellal, Morocco
*Correspondence e-mail: hasna.yassine@yahoo.com

Edited by J. Simpson, University of Otago, New Zealand (Received 8 September 2016; accepted 13 September 2016; online 16 September 2016)

The title compound, C12H14N4O3, is planar with an r.m.s deviation of 0.025 Å from the plane through all 19 non-hydrogen atoms. An intra­molecular N—H⋯O inter­action closes an S(6) ring. In the crystal, mol­ecules are linked by C—H⋯π and weak offset ππ stacking inter­actions [inter-centroid distance = 3.614 (2) Å], forming undulating sheets parallel to (001).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

As part of our ongoing studies of azide derivatives, we now describe the title compound, C12H14N4O3, with the mol­ecular structure shown in Fig. 1[link]. All non-hydrogen atoms are almost co-planar, with an r.m.s deviation of 0.025 Å from the plane through all 19 non-hydrogen atoms. Bond lengths and angles in the azide group are normal, with the N2—N3 bond [1.246 (3) Å] longer than the terminal N1—N2 distance [1.114 (3) Å] which has more triple-bond character. The azide angle is slightly bent [N1—N2—N3 = 175.2 (2)°]. An intra­molecular N—H⋯O inter­action closes an S(6) ring (Table 1[link]; Fig. 1[link]). A closely similar structure, ethyl 2-[(azido­carbon­yl)amino]­benzoate was reported recently (Yassine et al., 2016[Yassine, H., Hafid, A., Khouili, M., Mentre, O. & Ketatni, E. M. (2016). IUCrData, 1, x161155.]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C2–C7 ring

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4N⋯O2 0.86 1.93 2.644 (2) 139
C9—H9ACg1i 0.97 2.89 3.681 (3) 139
Symmetry code: (i) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z+1].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level and the Intra­molecular hydrogen bond is shown as a dashed line.

In the crystal, mol­ecules are linked by C—H⋯π and weak offset ππ stacking inter­actions [Cg1⋯Cg1i = 3.614 (2) Å, where Cg1 is the centroid of the C2–C7 ring; symmetry code: (i) −x, y, [{1\over 2}] − z], forming sheets parallel to (001) (Table 1[link] and Fig. 2[link]).

[Figure 2]
Figure 2
Partial crystal packing for the title compound showing ππ and C—H⋯π inter­actions between inversion-related mol­ecules as dashed lines.

Synthesis and crystallization

A solution of 2-(but­oxy­carbon­yl)benzoic acid (100 mg, 0.45 mmol), DPPA (0.194 ml, 0.90 mmol) and Et3N (0.127 ml, 0.90 mmol) in toluene (5 ml) was refluxed for 4 h. After cooling to room temperature, the reaction mixture was concentrated. The residue was recrystallized from EtOAc–hexane (1:9 v/v) to give blue block-shaped crystals in a yield of 63%, m.p. = 317 K.

1H NMR (300 MHz, CDCl3, δ p.p.m.): 10.87 (1H, NH), 8.48 (1H, H6), 8.03 (1H, H3), 7.55 (1H, H4), 7.11 (1H, H5), 4.32 (2H, H9), 1.76 (2H, H10), 1.48 (2H, H11), 0.98 (3H, H12). 13C NMR (75 MHz, CDCl3, δ p.p.m.): 168.00(C8), 154.40(C1), 140.58(C2), 134.59(C4), 130.89(C6), 122.85(C5), 119.50(C3), 115.54(C7), 65.44(C9), 30.53(C10), 19.22(C11), 13.70(C12).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The reflection (0 6 12) affected by the beam-stop was removed during refinement.

Table 2
Experimental details

Crystal data
Chemical formula C12H14N4O3
Mr 262.27
Crystal system, space group Monoclinic, C2/c
Temperature (K) 299
a, b, c (Å) 9.780 (3), 17.698 (5), 15.819 (4)
β (°) 105.985 (16)
V3) 2632.2 (12)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.30 × 0.22 × 0.15
 
Data collection
Diffractometer Bruker DUO APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker,2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.662, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 28366, 2318, 1370
Rint 0.064
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.117, 0.98
No. of reflections 2318
No. of parameters 173
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.18, −0.14
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Butyl 2-[(azidocarbonyl)amino]benzoate top
Crystal data top
C12H14N4O3F(000) = 1104
Mr = 262.27Dx = 1.324 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 9.780 (3) ÅCell parameters from 2318 reflections
b = 17.698 (5) Åθ = 2.3–25.0°
c = 15.819 (4) ŵ = 0.10 mm1
β = 105.985 (16)°T = 299 K
V = 2632.2 (12) Å3Block, purple
Z = 80.30 × 0.22 × 0.15 mm
Data collection top
Bruker DUO APEXII CCD
diffractometer
1370 reflections with I > 2σ(I)
φ and ω scansRint = 0.064
Absorption correction: multi-scan
(SADABS; Bruker,2009)
θmax = 25.0°, θmin = 2.3°
Tmin = 0.662, Tmax = 0.746h = 1111
28366 measured reflectionsk = 2020
2318 independent reflectionsl = 1818
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.045 w = 1/[σ2(Fo2) + (0.0486P)2 + 1.1042P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.117(Δ/σ)max < 0.001
S = 0.98Δρmax = 0.18 e Å3
2318 reflectionsΔρmin = 0.14 e Å3
173 parametersExtinction correction: SHELXL-2014/7 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00046 (17)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.82291 (15)0.05566 (8)0.54241 (9)0.0619 (4)
O20.78779 (17)0.06864 (9)0.53246 (10)0.0711 (5)
O31.13563 (18)0.25170 (9)0.69941 (11)0.0749 (5)
N10.9649 (2)0.40575 (13)0.63239 (15)0.0870 (7)
N20.9465 (2)0.34416 (13)0.61991 (13)0.0656 (5)
N30.9168 (2)0.27669 (11)0.60087 (12)0.0664 (6)
C11.0288 (2)0.22860 (13)0.64945 (14)0.0555 (6)
C21.0654 (2)0.09038 (12)0.66053 (13)0.0514 (5)
C71.0039 (2)0.02017 (12)0.62878 (13)0.0522 (5)
C80.8622 (2)0.01555 (13)0.56352 (14)0.0555 (6)
N40.99075 (19)0.15649 (9)0.62810 (11)0.0581 (5)
H4N0.91020.15020.58960.070*
C31.1961 (2)0.09132 (13)0.72320 (14)0.0604 (6)
H31.23790.13720.74460.072*
C41.2644 (2)0.02473 (14)0.75398 (15)0.0645 (6)
H41.35210.02630.79610.077*
C51.2056 (2)0.04399 (14)0.72361 (15)0.0668 (7)
H51.25290.08860.74490.080*
C61.0765 (2)0.04600 (13)0.66150 (15)0.0621 (6)
H61.03650.09240.64080.075*
C90.6860 (2)0.06591 (12)0.47901 (15)0.0600 (6)
H9A0.68460.04070.42430.072*
H9B0.61150.04440.50130.072*
C100.6622 (2)0.14899 (11)0.46373 (14)0.0567 (6)
H10A0.66340.17340.51880.068*
H10B0.73900.17000.44340.068*
C110.5212 (2)0.16541 (12)0.39631 (15)0.0673 (7)
H11A0.44470.14450.41700.081*
H11B0.51990.14030.34160.081*
C120.4946 (3)0.24873 (13)0.37882 (17)0.0868 (9)
H12A0.40460.25570.33600.130*
H12B0.56880.26970.35700.130*
H12C0.49350.27380.43240.130*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0566 (10)0.0519 (9)0.0651 (10)0.0001 (7)0.0033 (8)0.0033 (7)
O20.0679 (11)0.0531 (10)0.0743 (11)0.0064 (8)0.0106 (8)0.0025 (8)
O30.0629 (11)0.0601 (10)0.0861 (12)0.0046 (8)0.0058 (9)0.0045 (9)
N10.0811 (16)0.0590 (15)0.1032 (18)0.0072 (12)0.0046 (13)0.0056 (13)
N20.0610 (13)0.0582 (15)0.0685 (13)0.0045 (11)0.0025 (10)0.0006 (11)
N30.0684 (13)0.0497 (12)0.0701 (13)0.0028 (10)0.0006 (10)0.0021 (10)
C10.0562 (15)0.0542 (14)0.0525 (13)0.0018 (12)0.0088 (12)0.0007 (11)
C20.0491 (13)0.0511 (13)0.0523 (13)0.0007 (11)0.0111 (11)0.0007 (10)
C70.0501 (13)0.0535 (13)0.0506 (12)0.0011 (11)0.0096 (10)0.0008 (10)
C80.0591 (15)0.0519 (14)0.0536 (13)0.0016 (12)0.0122 (11)0.0030 (11)
N40.0552 (11)0.0491 (12)0.0602 (11)0.0004 (9)0.0005 (9)0.0003 (9)
C30.0557 (14)0.0585 (15)0.0614 (14)0.0027 (12)0.0069 (11)0.0013 (11)
C40.0523 (14)0.0653 (16)0.0675 (15)0.0023 (12)0.0021 (11)0.0035 (13)
C50.0604 (16)0.0602 (15)0.0726 (16)0.0092 (12)0.0064 (13)0.0057 (13)
C60.0599 (15)0.0534 (14)0.0674 (15)0.0004 (11)0.0080 (12)0.0012 (12)
C90.0562 (14)0.0536 (14)0.0617 (14)0.0035 (11)0.0022 (11)0.0019 (11)
C100.0543 (13)0.0528 (13)0.0567 (14)0.0018 (10)0.0047 (11)0.0003 (10)
C110.0585 (15)0.0610 (16)0.0707 (15)0.0001 (12)0.0021 (12)0.0023 (12)
C120.083 (2)0.0685 (18)0.090 (2)0.0093 (15)0.0069 (15)0.0108 (14)
Geometric parameters (Å, º) top
O1—C81.333 (2)C4—H40.9300
O1—C91.446 (2)C5—C61.371 (3)
O2—C81.207 (2)C5—H50.9300
O3—C11.195 (2)C6—H60.9300
N1—N21.114 (2)C9—C101.498 (3)
N2—N31.246 (3)C9—H9A0.9700
N3—C11.433 (3)C9—H9B0.9700
C1—N41.346 (3)C10—C111.521 (3)
C2—C31.385 (3)C10—H10A0.9700
C2—N41.400 (2)C10—H10B0.9700
C2—C71.411 (3)C11—C121.510 (3)
C7—C61.393 (3)C11—H11A0.9700
C7—C81.485 (3)C11—H11B0.9700
N4—H4N0.8600C12—H12A0.9600
C3—C41.376 (3)C12—H12B0.9600
C3—H30.9300C12—H12C0.9600
C4—C51.374 (3)
C8—O1—C9116.14 (16)C5—C6—C7121.3 (2)
N1—N2—N3175.2 (2)C5—C6—H6119.4
N2—N3—C1110.28 (19)C7—C6—H6119.4
O3—C1—N4128.4 (2)O1—C9—C10107.97 (17)
O3—C1—N3123.5 (2)O1—C9—H9A110.1
N4—C1—N3108.10 (19)C10—C9—H9A110.1
C3—C2—N4122.53 (19)O1—C9—H9B110.1
C3—C2—C7119.0 (2)C10—C9—H9B110.1
N4—C2—C7118.50 (19)H9A—C9—H9B108.4
C6—C7—C2119.0 (2)C9—C10—C11111.82 (17)
C6—C7—C8119.6 (2)C9—C10—H10A109.3
C2—C7—C8121.38 (19)C11—C10—H10A109.3
O2—C8—O1122.3 (2)C9—C10—H10B109.3
O2—C8—C7125.7 (2)C11—C10—H10B109.3
O1—C8—C7112.08 (19)H10A—C10—H10B107.9
C1—N4—C2128.32 (19)C12—C11—C10113.11 (19)
C1—N4—H4N115.8C12—C11—H11A109.0
C2—N4—H4N115.8C10—C11—H11A109.0
C4—C3—C2120.4 (2)C12—C11—H11B109.0
C4—C3—H3119.8C10—C11—H11B109.0
C2—C3—H3119.8H11A—C11—H11B107.8
C5—C4—C3121.2 (2)C11—C12—H12A109.5
C5—C4—H4119.4C11—C12—H12B109.5
C3—C4—H4119.4H12A—C12—H12B109.5
C6—C5—C4119.2 (2)C11—C12—H12C109.5
C6—C5—H5120.4H12A—C12—H12C109.5
C4—C5—H5120.4H12B—C12—H12C109.5
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C2–C7 ring
D—H···AD—HH···AD···AD—H···A
N4—H4N···O20.861.932.644 (2)139
C9—H9A···Cg1i0.972.893.681 (3)139
Symmetry code: (i) x+1/2, y+1/2, z+1.
 

Acknowledgements

The X-rays diffractometer is funded by Région NPDC, FEDER, CNRS and MESR.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYassine, H., Hafid, A., Khouili, M., Mentre, O. & Ketatni, E. M. (2016). IUCrData, 1, x161155.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds