organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Ethyl 3-amino-2-carbamoyl-4-(4-meth­­oxy­phen­yl)-6-methyl­thieno[2,3-b]pyridine-5-carboxyl­ate di­methyl sulfoxide monosolvate

aChemistry Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt, bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, cChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, dChemistry Department, Faculty of Science, Mini University, 61519 El-Minia, Egypt, eDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and fKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by P. C. Healy, Griffith University, Australia (Received 12 September 2016; accepted 18 September 2016; online 23 September 2016)

The conformation of the title mol­ecule, C19H19N3O4S·C2H6OS, which crystallized as a DMSO solvate, is partially determined by an intra­molecular N—H⋯O hydrogen bond, forming an S(6) loop. The thieno­pyridine bicyclic system is almost planar, with an r.m.s. deviation of 0.002 Å. The benzene ring makes a dihedral angle of 65.44 (8)° with the mean plane of the thieno­pyridine bicyclic system. In the crystal, mol­ecules are linked by pairs of N—H⋯O hydrogen bonds, forming inversion dimers with an R22(8) ring motif. Within the dimers, which stack along the a-axis direction, there is a weak ππ inter­action [centroid-to-centroid distance = 3.5428 (11) Å] involving inversion-related thio­phene rings. In addition, N—H⋯O and C—H⋯O hydrogen bonds help to consolidate the packing, via the solvent molecules.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Nowadays, after a lapse of more than one century, the chemistry of thieno[2,3-b]pyridines is well known. This is associated primarily with the great practical importance of many derivatives of thieno[2,3-b]pyridine (Litvinov et al., 2005[Litvinov, V. P., Dotsenko, V. V. & Krivokolysko, S. G. (2005). Russ. Chem. Bull. 54, 864-904.]). The spectrum of biological activities of this class of compounds is rather broad and includes anti­viral (Attaby et al., 2007[Attaby, F. A., Elghandour, A. H. H., Ali, M. A. & Ibrahem, Y. M. (2007). Phosphorus Sulfur Silicon Relat. Elem. 182, 695-709.]), anti­diabetic (Bahekar et al. 2007[Bahekar, R. H., Jain, M. R., Jadav, P. A., Prajapati, V. M., Patel, D. N., Gupta, A. A., Sharma, A., Tom, R., Bandyopadhya, D., Modi, H. & Patel, P. R. (2007). Bioorg. Med. Chem. 15, 6782-6795.]) and anti­microbial (Abdel-Rahman et al., 2003[Abdel-Rahman, A. E., Bakhite, E. A. & Al-Taifi, E. A. (2003). Pharmazie, 58, 372-377.]). As part of our studies in this area, we undertook the synthesis of the title compound in order to establish its crystal structure.

The conformation of the title mol­ecule (Fig. 1[link]) is partially determined by an intra­molecular N2—H2A⋯O1 hydrogen bond, forming an S(6) loop (Table 1[link]). The thieno­pyridine bicyclic system (S1/N3/C2–C8) is almost planar, with an r.m.s. deviation of 0.002 Å. The benzene ring (C9–C14) makes a dihedral angle of 65.44 (8)° with the mean plane of the thieno­pyridine bicyclic system.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯O1i 0.87 (2) 2.07 (2) 2.916 (2) 165 (2)
N1—H1A⋯O1Sii 0.88 (2) 2.08 (2) 2.918 (3) 158 (2)
N2—H2A⋯O1 0.86 (2) 2.10 (2) 2.719 (2) 129 (2)
C14—H14⋯O3iii 0.95 2.50 3.381 (2) 155
C16—H16A⋯O2iv 0.99 2.48 3.254 (3) 134
C19—H19C⋯O1v 0.98 2.75 3.474 (3) 131
C19—H19A⋯O1Svi 0.98 2.84 3.483 (3) 124
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x, y, z-1; (iii) -x+1, -y+2, -z+1; (iv) -x+1, -y+2, -z+2; (v) -x+1, -y+1, -z+1; (vi) -x, -y+1, -z+2.
[Figure 1]
Figure 1
The mol­ecular structure of the title mol­ecule, shown with 50% probability displacement ellipsoids.

In the crystal, mol­ecules are linked by pairs of N1—H1A⋯O1 hydrogen bonds, forming inversion dimers with an [R_{2}^{2}](8) ring motif (Table 1[link]). Within the dimers, which stack along the a-axis direction, there is a weak ππ inter­action [centroid-to-centroid distance = 3.5428 (11) Å] involving inversion-related thio­phene rings. In addition, N1—H1A⋯O1S(x, y, z − 1) and C19—H19A⋯O1S(−x, −y + 1, −z + 2) hydrogen bonds help to establish the packin (Fig. 2[link] and Table 1[link]).

[Figure 2]
Figure 2
The packing of the title mol­ecule, viewed down the a axis, with the hydrogen bonds shown by dotted lines.

Synthesis and crystallization

The title compound was prepared by heating equimolar qu­anti­ties of ethyl 3-cyano-6-methyl-4-(4-meth­oxy­phen­yl)-2-thioxo-1,2-di­hydropyridine-5-carboxyl­ate (10 mmol) and chloro­acetamide (10 mmol) in absolute ethanol (25 ml) containing dissolved sodium (0.40 g) on a steam bath for 30 min. The product that formed on cooling was collected and recrystallized from DMSO solution to give yellow crystals of the title compound (yield 75%; m.p. 487–488 K). IR (KBr, cm−1) ν = 3490, 3450, 3300, 3200 (2 NH2), 1720(C=O, ester), 1650 (C=O, amide). 1H NMR (DMSO-d6): δ7.0–7.3 (m, 6H, NH2 and ArH's), 5.6 (s, 2H, NH2), 3.5–4.2 (m, 5H, OCH2 and OCH3), 2.6 (s, 3H, CH3), 0.9–1.1 (t, 3H, CH3 of ester).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C19H19N3O4S·C2H6OS
Mr 463.56
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 173
a, b, c (Å) 9.9950 (7), 10.1492 (5), 11.2620 (8)
α, β, γ (°) 90.656 (5), 92.291 (5), 101.925 (5)
V3) 1116.66 (13)
Z 2
Radiation type Cu Kα
μ (mm−1) 2.49
Crystal size (mm) 0.34 × 0.18 × 0.12
 
Data collection
Diffractometer Rigaku Oxford Diffraction
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.])
No. of measured, independent and observed [I > 2σ(I)] reflections 6959, 4247, 3706
Rint 0.041
(sin θ/λ)max−1) 0.615
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.139, 1.06
No. of reflections 4247
No. of parameters 298
No. of restraints 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.40, −0.45
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Ethyl 3-amino-2-carbamoyl-4-(4-methoxyphenyl)-6-methylthieno[2,3-b]pyridine-5-carboxylate dimethyl sulfoxide monosolvate top
Crystal data top
C19H19N3O4S·C2H6OSZ = 2
Mr = 463.56F(000) = 488
Triclinic, P1Dx = 1.379 Mg m3
a = 9.9950 (7) ÅCu Kα radiation, λ = 1.54184 Å
b = 10.1492 (5) ÅCell parameters from 3206 reflections
c = 11.2620 (8) Åθ = 3.9–71.4°
α = 90.656 (5)°µ = 2.49 mm1
β = 92.291 (5)°T = 173 K
γ = 101.925 (5)°Prism, yellow
V = 1116.66 (13) Å30.34 × 0.18 × 0.12 mm
Data collection top
Rigaku Oxford Diffraction
diffractometer
4247 independent reflections
Radiation source: Enhance (Cu) X-ray Source3706 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 16.0416 pixels mm-1θmax = 71.4°, θmin = 3.9°
ω scansh = 1112
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
k = 128
l = 1113
6959 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.049 w = 1/[σ2(Fo2) + (0.0879P)2 + 0.1101P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.139(Δ/σ)max = 0.001
S = 1.06Δρmax = 0.40 e Å3
4247 reflectionsΔρmin = 0.45 e Å3
298 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
4 restraintsExtinction coefficient: 0.0058 (7)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4772 (2)0.54248 (19)0.17912 (17)0.0186 (4)
C1S0.1585 (3)0.1551 (3)0.9746 (3)0.0492 (7)
H1S10.2415920.2212020.9578890.074*
H1S20.1265230.0998510.9030840.074*
H1S30.1785720.0972491.0391110.074*
C20.45367 (19)0.57636 (18)0.30206 (17)0.0174 (4)
C2S0.0347 (3)0.3450 (3)0.8908 (3)0.0513 (7)
H2S10.0274590.4071760.8999310.077*
H2S20.0066740.2885100.8192960.077*
H2S30.1282680.3966110.8832960.077*
C30.54673 (19)0.66430 (18)0.37518 (16)0.0154 (4)
C40.49047 (18)0.68700 (18)0.48843 (16)0.0149 (4)
C50.35832 (19)0.60709 (18)0.49757 (17)0.0165 (4)
C60.3323 (2)0.68041 (18)0.68476 (17)0.0187 (4)
C70.4619 (2)0.76783 (18)0.68325 (16)0.0181 (4)
C80.54318 (19)0.77362 (18)0.58518 (17)0.0164 (4)
C90.67405 (19)0.87524 (18)0.58362 (16)0.0169 (4)
C100.7836 (2)0.87283 (19)0.66376 (17)0.0210 (4)
H100.7789350.8001260.7168650.025*
C110.8990 (2)0.9754 (2)0.66657 (18)0.0234 (4)
H110.9739880.9715430.7200670.028*
C120.9058 (2)1.08446 (19)0.59123 (18)0.0219 (4)
C130.7987 (2)1.08628 (19)0.50918 (18)0.0214 (4)
H130.8037261.1588160.4558490.026*
C140.6846 (2)0.98204 (19)0.50535 (17)0.0194 (4)
H140.6122270.9833060.4483600.023*
C150.5046 (2)0.8659 (2)0.78571 (17)0.0205 (4)
C160.5193 (3)1.0959 (2)0.84395 (19)0.0306 (5)
H16A0.4920451.0593340.9225530.037*
H16B0.4662291.1657100.8246920.037*
C170.6686 (3)1.1581 (3)0.8497 (3)0.0513 (8)
H17A0.7207101.0911360.8761670.077*
H17B0.6862001.2347400.9058940.077*
H17C0.6968781.1892030.7706820.077*
C181.0181 (2)1.3070 (2)0.5402 (3)0.0349 (6)
H18A1.0198231.2886100.4547790.052*
H18B1.0983541.3761740.5652120.052*
H18C0.9346161.3390430.5571300.052*
C190.2440 (2)0.6782 (2)0.7903 (2)0.0295 (5)
H19A0.1513640.6274930.7693180.044*
H19B0.2400610.7707230.8133810.044*
H19C0.2829810.6351010.8568580.044*
N10.37300 (19)0.47179 (19)0.11272 (16)0.0261 (4)
H1A0.2873 (19)0.443 (2)0.132 (2)0.031*
H1B0.392 (3)0.445 (2)0.0427 (17)0.031*
N20.67459 (17)0.72257 (17)0.34414 (15)0.0209 (4)
H2A0.704 (2)0.691 (2)0.2818 (17)0.025*
H2B0.734 (2)0.778 (2)0.385 (2)0.025*
N30.27964 (16)0.60146 (16)0.59184 (15)0.0195 (4)
O10.59216 (15)0.58235 (15)0.13776 (12)0.0248 (3)
O1S0.08790 (18)0.3310 (2)1.12153 (16)0.0446 (5)
O20.54367 (19)0.83839 (15)0.88281 (13)0.0336 (4)
O30.48721 (16)0.98795 (14)0.75431 (12)0.0252 (3)
O41.02006 (15)1.18517 (14)0.60450 (15)0.0291 (4)
S10.29893 (5)0.51409 (4)0.36893 (4)0.01890 (17)
S1S0.02868 (6)0.24091 (6)1.01773 (6)0.0356 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0185 (9)0.0198 (9)0.0166 (9)0.0024 (7)0.0007 (7)0.0055 (7)
C1S0.0440 (16)0.0411 (14)0.0611 (19)0.0072 (12)0.0024 (14)0.0080 (13)
C20.0158 (9)0.0199 (9)0.0153 (9)0.0008 (7)0.0021 (7)0.0017 (7)
C2S0.063 (2)0.0492 (16)0.0415 (16)0.0117 (14)0.0065 (14)0.0055 (13)
C30.0137 (9)0.0175 (8)0.0143 (9)0.0015 (7)0.0015 (7)0.0015 (7)
C40.0129 (9)0.0171 (8)0.0140 (9)0.0016 (7)0.0010 (7)0.0018 (7)
C50.0163 (9)0.0155 (8)0.0163 (9)0.0004 (7)0.0021 (7)0.0015 (7)
C60.0204 (10)0.0191 (9)0.0166 (9)0.0030 (8)0.0053 (7)0.0011 (7)
C70.0216 (10)0.0188 (9)0.0135 (9)0.0033 (8)0.0019 (7)0.0014 (7)
C80.0163 (9)0.0177 (9)0.0153 (9)0.0034 (7)0.0003 (7)0.0001 (7)
C90.0165 (9)0.0199 (9)0.0133 (9)0.0014 (7)0.0019 (7)0.0057 (7)
C100.0241 (10)0.0213 (9)0.0170 (9)0.0035 (8)0.0009 (8)0.0016 (7)
C110.0193 (10)0.0267 (10)0.0226 (10)0.0023 (8)0.0060 (8)0.0029 (8)
C120.0154 (9)0.0217 (9)0.0264 (11)0.0014 (8)0.0019 (8)0.0053 (8)
C130.0203 (10)0.0210 (9)0.0214 (10)0.0005 (8)0.0026 (8)0.0004 (8)
C140.0171 (9)0.0229 (9)0.0168 (9)0.0014 (8)0.0003 (7)0.0018 (7)
C150.0224 (10)0.0233 (10)0.0154 (9)0.0037 (8)0.0043 (8)0.0030 (7)
C160.0520 (15)0.0245 (10)0.0171 (10)0.0133 (10)0.0010 (10)0.0077 (8)
C170.0543 (18)0.0345 (13)0.0632 (19)0.0106 (13)0.0226 (15)0.0208 (13)
C180.0190 (11)0.0234 (10)0.0582 (16)0.0056 (9)0.0013 (10)0.0043 (10)
C190.0282 (11)0.0350 (11)0.0244 (11)0.0024 (9)0.0139 (9)0.0012 (9)
N10.0212 (9)0.0340 (10)0.0186 (9)0.0044 (7)0.0027 (7)0.0124 (7)
N20.0147 (8)0.0279 (9)0.0166 (8)0.0038 (7)0.0044 (6)0.0081 (7)
N30.0165 (8)0.0206 (8)0.0208 (8)0.0010 (6)0.0070 (6)0.0015 (6)
O10.0205 (7)0.0330 (8)0.0176 (7)0.0025 (6)0.0041 (6)0.0084 (6)
O1S0.0257 (9)0.0666 (12)0.0361 (10)0.0024 (8)0.0035 (7)0.0127 (9)
O20.0574 (11)0.0298 (8)0.0155 (7)0.0153 (8)0.0053 (7)0.0035 (6)
O30.0395 (9)0.0218 (7)0.0146 (7)0.0076 (6)0.0019 (6)0.0039 (5)
O40.0172 (7)0.0231 (7)0.0427 (9)0.0050 (6)0.0038 (6)0.0015 (6)
S10.0145 (3)0.0207 (3)0.0183 (3)0.00379 (18)0.00207 (18)0.00517 (18)
S1S0.0216 (3)0.0423 (4)0.0372 (4)0.0064 (2)0.0002 (2)0.0015 (3)
Geometric parameters (Å, º) top
C1—O11.247 (2)C11—C121.394 (3)
C1—N11.332 (3)C11—H110.9500
C1—C21.463 (3)C12—O41.368 (2)
C1S—S1S1.784 (3)C12—C131.389 (3)
C1S—H1S10.9800C13—C141.385 (3)
C1S—H1S20.9800C13—H130.9500
C1S—H1S30.9800C14—H140.9500
C2—C31.385 (3)C15—O21.202 (2)
C2—S11.7489 (19)C15—O31.335 (2)
C2S—S1S1.783 (3)C16—O31.458 (2)
C2S—H2S10.9800C16—C171.494 (4)
C2S—H2S20.9800C16—H16A0.9900
C2S—H2S30.9800C16—H16B0.9900
C3—N21.354 (2)C17—H17A0.9800
C3—C41.449 (2)C17—H17B0.9800
C4—C81.407 (2)C17—H17C0.9800
C4—C51.408 (3)C18—O41.443 (3)
C5—N31.341 (2)C18—H18A0.9800
C5—S11.7351 (19)C18—H18B0.9800
C6—N31.333 (3)C18—H18C0.9800
C6—C71.412 (3)C19—H19A0.9800
C6—C191.507 (3)C19—H19B0.9800
C7—C81.391 (3)C19—H19C0.9800
C7—C151.505 (3)N1—H1A0.883 (17)
C8—C91.490 (3)N1—H1B0.872 (17)
C9—C141.395 (3)N2—H2A0.856 (16)
C9—C101.395 (3)N2—H2B0.849 (17)
C10—C111.384 (3)O1S—S1S1.4997 (19)
C10—H100.9500
O1—C1—N1121.43 (18)C13—C12—C11119.54 (18)
O1—C1—C2119.93 (17)C14—C13—C12119.80 (18)
N1—C1—C2118.62 (18)C14—C13—H13120.1
S1S—C1S—H1S1109.5C12—C13—H13120.1
S1S—C1S—H1S2109.5C13—C14—C9121.21 (18)
H1S1—C1S—H1S2109.5C13—C14—H14119.4
S1S—C1S—H1S3109.5C9—C14—H14119.4
H1S1—C1S—H1S3109.5O2—C15—O3124.74 (18)
H1S2—C1S—H1S3109.5O2—C15—C7125.44 (18)
C3—C2—C1124.40 (17)O3—C15—C7109.77 (16)
C3—C2—S1113.21 (14)O3—C16—C17111.1 (2)
C1—C2—S1122.33 (14)O3—C16—H16A109.4
S1S—C2S—H2S1109.5C17—C16—H16A109.4
S1S—C2S—H2S2109.5O3—C16—H16B109.4
H2S1—C2S—H2S2109.5C17—C16—H16B109.4
S1S—C2S—H2S3109.5H16A—C16—H16B108.0
H2S1—C2S—H2S3109.5C16—C17—H17A109.5
H2S2—C2S—H2S3109.5C16—C17—H17B109.5
N2—C3—C2123.98 (17)H17A—C17—H17B109.5
N2—C3—C4124.14 (17)C16—C17—H17C109.5
C2—C3—C4111.89 (16)H17A—C17—H17C109.5
C8—C4—C5117.15 (17)H17B—C17—H17C109.5
C8—C4—C3131.66 (17)O4—C18—H18A109.5
C5—C4—C3111.17 (16)O4—C18—H18B109.5
N3—C5—C4126.23 (18)H18A—C18—H18B109.5
N3—C5—S1120.69 (15)O4—C18—H18C109.5
C4—C5—S1113.06 (14)H18A—C18—H18C109.5
N3—C6—C7122.10 (17)H18B—C18—H18C109.5
N3—C6—C19116.99 (18)C6—C19—H19A109.5
C7—C6—C19120.84 (18)C6—C19—H19B109.5
C8—C7—C6121.53 (18)H19A—C19—H19B109.5
C8—C7—C15120.07 (17)C6—C19—H19C109.5
C6—C7—C15118.10 (17)H19A—C19—H19C109.5
C7—C8—C4116.71 (17)H19B—C19—H19C109.5
C7—C8—C9119.62 (17)C1—N1—H1A128.2 (17)
C4—C8—C9123.53 (17)C1—N1—H1B116.7 (18)
C14—C9—C10118.48 (18)H1A—N1—H1B115 (2)
C14—C9—C8119.18 (17)C3—N2—H2A116.7 (17)
C10—C9—C8122.19 (17)C3—N2—H2B127.3 (17)
C11—C10—C9120.59 (18)H2A—N2—H2B115 (2)
C11—C10—H10119.7C6—N3—C5116.20 (16)
C9—C10—H10119.7C15—O3—C16117.63 (15)
C10—C11—C12120.30 (18)C12—O4—C18116.62 (16)
C10—C11—H11119.9C5—S1—C290.56 (9)
C12—C11—H11119.9O1S—S1S—C2S106.93 (13)
O4—C12—C13123.92 (18)O1S—S1S—C1S106.65 (12)
O4—C12—C11116.53 (18)C2S—S1S—C1S96.36 (15)
O1—C1—C2—C37.7 (3)C7—C8—C9—C1064.7 (2)
N1—C1—C2—C3170.64 (18)C4—C8—C9—C10119.9 (2)
O1—C1—C2—S1175.41 (14)C14—C9—C10—C111.1 (3)
N1—C1—C2—S16.2 (3)C8—C9—C10—C11174.31 (18)
C1—C2—C3—N24.7 (3)C9—C10—C11—C121.7 (3)
S1—C2—C3—N2178.22 (15)C10—C11—C12—O4176.32 (18)
C1—C2—C3—C4174.97 (17)C10—C11—C12—C133.2 (3)
S1—C2—C3—C42.1 (2)O4—C12—C13—C14177.50 (18)
N2—C3—C4—C84.5 (3)C11—C12—C13—C141.9 (3)
C2—C3—C4—C8175.14 (18)C12—C13—C14—C90.8 (3)
N2—C3—C4—C5176.73 (17)C10—C9—C14—C132.3 (3)
C2—C3—C4—C53.6 (2)C8—C9—C14—C13173.22 (17)
C8—C4—C5—N32.9 (3)C8—C7—C15—O2109.9 (2)
C3—C4—C5—N3178.15 (17)C6—C7—C15—O276.3 (3)
C8—C4—C5—S1175.38 (13)C8—C7—C15—O372.7 (2)
C3—C4—C5—S13.6 (2)C6—C7—C15—O3101.1 (2)
N3—C6—C7—C81.6 (3)C7—C6—N3—C51.7 (3)
C19—C6—C7—C8178.25 (18)C19—C6—N3—C5178.43 (17)
N3—C6—C7—C15172.07 (17)C4—C5—N3—C60.6 (3)
C19—C6—C7—C154.6 (3)S1—C5—N3—C6177.53 (13)
C6—C7—C8—C40.8 (3)O2—C15—O3—C160.6 (3)
C15—C7—C8—C4174.30 (16)C7—C15—O3—C16178.10 (17)
C6—C7—C8—C9175.02 (16)C17—C16—O3—C1584.1 (2)
C15—C7—C8—C91.5 (3)C13—C12—O4—C188.8 (3)
C5—C4—C8—C72.7 (2)C11—C12—O4—C18170.63 (19)
C3—C4—C8—C7178.55 (18)N3—C5—S1—C2179.58 (16)
C5—C4—C8—C9172.84 (16)C4—C5—S1—C22.04 (14)
C3—C4—C8—C95.9 (3)C3—C2—S1—C50.10 (15)
C7—C8—C9—C14110.7 (2)C1—C2—S1—C5177.08 (16)
C4—C8—C9—C1464.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O1i0.87 (2)2.07 (2)2.916 (2)165 (2)
N1—H1A···O1Sii0.88 (2)2.08 (2)2.918 (3)158 (2)
N2—H2A···O10.86 (2)2.10 (2)2.719 (2)129 (2)
C14—H14···O3iii0.952.503.381 (2)155
C16—H16A···O2iv0.992.483.254 (3)134
C19—H19C···O1v0.982.753.474 (3)131
C19—H19A···O1Svi0.982.843.483 (3)124
Symmetry codes: (i) x+1, y+1, z; (ii) x, y, z1; (iii) x+1, y+2, z+1; (iv) x+1, y+2, z+2; (v) x+1, y+1, z+1; (vi) x, y+1, z+2.
 

Acknowledgements

JPJ would like to acknowledge the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationAbdel-Rahman, A. E., Bakhite, E. A. & Al-Taifi, E. A. (2003). Pharmazie, 58, 372–377.  Web of Science PubMed CAS Google Scholar
First citationAgilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationAttaby, F. A., Elghandour, A. H. H., Ali, M. A. & Ibrahem, Y. M. (2007). Phosphorus Sulfur Silicon Relat. Elem. 182, 695–709.  CrossRef CAS Google Scholar
First citationBahekar, R. H., Jain, M. R., Jadav, P. A., Prajapati, V. M., Patel, D. N., Gupta, A. A., Sharma, A., Tom, R., Bandyopadhya, D., Modi, H. & Patel, P. R. (2007). Bioorg. Med. Chem. 15, 6782–6795.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLitvinov, V. P., Dotsenko, V. V. & Krivokolysko, S. G. (2005). Russ. Chem. Bull. 54, 864–904.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds