organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-Amino-4-methyl­pyridinium 2-hy­dr­oxy­benzoate

aResearch and Development Centre, Bharathiar University, Coimbatore 641 046, India, bDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India, and cPost Graduate and Research Department of Physics, The American College, Madurai 625 002, India
*Correspondence e-mail: israel.samuel@gmail.com, chakkaravarthi_2005@yahoo.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 11 September 2016; accepted 12 September 2016; online 16 September 2016)

The title mol­ecular salt, C6H9N2+·C7H5O3, contains two ion pairs in the asymmetric unit. Both anions feature an intra­molecular O—H⋯O hydrogen bond, which closes an S(6) ring. In the crystal, N—H⋯O hydogen bonds link the components into [010] chains, which feature R22(8) loops. The crystal structure is consolidated by weak C—H⋯O and ππ [centroid-to-centroid distance = 3.7528 (16) Å] inter­actions, forming a three-dimensional network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

As part of our ongoing studies of pyridinium mol­ecular salts (Sivakumar et al., 2016a[Sivakumar, P., Sudhahar, S., Israel, S. & Chakkaravarthi, G. (2016a). IUCrData, 1, x160747.],b[Sivakumar, P., Sudhahar, S., Gunasekaran, B., Israel, S. & Chakkaravarthi, G. (2016b). IUCrData, 1, x160817.]), we now report the synthesis and the crystal structure of the title mol­ecular salt (Fig. 1[link]), whose asymmetric unit contains two 2-amino-4-methyl­pyridinium cations and two 2-hy­droxy­benzoate anions. The cations are protonated at the pyridine N (N1 and N3) atoms as usual. In both anions, intra­molecular O1—H1A⋯O3 and O4—H4C⋯O6 hydrogen bonds (Table 1[link]) generate S(6) rings.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O3 0.83 (1) 1.81 (2) 2.546 (3) 149 (4)
O4—H4C⋯O6 0.83 (1) 1.74 (2) 2.508 (3) 154 (4)
N1—H1⋯O3i 0.86 1.79 2.648 (3) 173
N2—H2B⋯O2i 0.86 (1) 2.00 (1) 2.858 (4) 175 (3)
N2—H2A⋯O5ii 0.85 (1) 2.05 (1) 2.890 (3) 168 (3)
N3—H3A⋯O5ii 0.86 (1) 1.89 (1) 2.743 (3) 172 (3)
N4—H4A⋯O6ii 0.86 (1) 1.96 (1) 2.814 (4) 177 (3)
N4—H4B⋯O2ii 0.86 (1) 2.05 (1) 2.891 (4) 170 (4)
C12—H12⋯O4iii 0.93 2.52 3.390 (4) 156
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x, -y+1, -z; (iii) -x+1, -y+1, -z.
[Figure 1]
Figure 1
The mol­ecular structure of the title mol­ecular salt, with atom labelling and 30% probability displacement ellipsoids.

In the crystal, N1—H1⋯O3i, N2—H2B⋯O2i, N3—H3A⋯O5ii and N4—H4A⋯O6ii hydrogen bonds link adjacent anions and cations, generating [R_{2}^{2}](8) ring-set motifs (Fig. 2[link]); these units are further connected by N4—H4B⋯O2 (Table 1[link]) hydrogen bonds into chains propagating along [010]. The crystal structure also features weak C12—H12⋯O4iii (Table 1[link]) and ππ [Cg1⋯Cg1iv = 3.7528 (16) Å; symmetry code: (iv) 1 − x, 1 − y, −z; Cg1 is the centroid of the N1/C8–C12 ring] inter­actions, which cross-link the chains, forming a three-dimensional network (Fig. 3[link]).

[Figure 2]
Figure 2
A partial view of the crystal packing showing the ring motifs.
[Figure 3]
Figure 3
The crystal packing of the title mol­ecular salt viewed along the bc plane. Hydrogen bonds are shown as dashed lines. H atoms not involving in hydrogen bonding have been omitted for clarity.

Synthesis and crystallization

An equimolar ratio of 2-hy­droxy benzoic acid (0.69 g) and 2-amino-4-methyl­pyridine (0.54 g) was dissolved in 10 ml of methanol and a white precipitate formed. The precipitate was dissolved in 20 ml of water and kept at room temperature for slow evaporation. After 30 days, colourless blocks of the title salt were isolated.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C6H9N2+·C7H5O3
Mr 246.26
Crystal system, space group Monoclinic, P21/c
Temperature (K) 295
a, b, c (Å) 12.6615 (9), 13.8008 (11), 15.4039 (14)
β (°) 111.225 (2)
V3) 2509.1 (4)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.26 × 0.24 × 0.20
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.678, 0.745
No. of measured, independent and observed reflections 27359, 5010, 2989
Rint 0.034
(sin θ/λ)max−1) 0.621
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.161, 1.08
No. of reflections 5010
No. of parameters 359
No. of restraints 8
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.27, −0.22
Computer programs: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2016 (Sheldrick, 2015) and PLATON (Spek, 2009).

2-Amino-4-methylpyridinium 2-hydroxybenzoate top
Crystal data top
C6H9N2+·C7H5O3F(000) = 1040
Mr = 246.26Dx = 1.304 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.6615 (9) ÅCell parameters from 6612 reflections
b = 13.8008 (11) Åθ = 2.3–23.6°
c = 15.4039 (14) ŵ = 0.09 mm1
β = 111.225 (2)°T = 295 K
V = 2509.1 (4) Å3Block, colourless
Z = 80.26 × 0.24 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
Rint = 0.034
ω and φ scanθmax = 26.2°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1515
Tmin = 0.678, Tmax = 0.745k = 1717
27359 measured reflectionsl = 1918
5010 independent reflections
Refinement top
Refinement on F28 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.060H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.161 w = 1/[σ2(Fo2) + (0.0343P)2 + 2.845P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
5010 reflectionsΔρmax = 0.27 e Å3
359 parametersΔρmin = 0.22 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3683 (3)0.1420 (2)0.0863 (2)0.0459 (7)
C60.2754 (3)0.1418 (2)0.0040 (3)0.0673 (10)
H60.2031200.1465800.0061130.081*
C50.2876 (5)0.1348 (3)0.0803 (3)0.0926 (14)
H50.2243830.1359310.1351720.111*
C40.3943 (6)0.1260 (3)0.0829 (3)0.1019 (17)
H40.4029330.1202880.1401420.122*
C30.4884 (4)0.1255 (3)0.0027 (3)0.0886 (13)
H30.5600970.1195500.0058580.106*
C20.4768 (3)0.1339 (2)0.0828 (2)0.0574 (9)
C70.3514 (2)0.1503 (2)0.1759 (2)0.0495 (8)
C80.3182 (2)0.3869 (2)0.0761 (2)0.0429 (7)
C90.3187 (2)0.4032 (2)0.0137 (2)0.0454 (7)
H90.2506540.4148880.0220090.055*
C100.4166 (2)0.4021 (2)0.0888 (2)0.0465 (7)
C110.5197 (3)0.3858 (2)0.0753 (2)0.0504 (8)
C120.5169 (2)0.3711 (2)0.0118 (2)0.0505 (8)
H120.5842920.3599200.0213490.061*
C130.4198 (3)0.4157 (3)0.1863 (2)0.0668 (10)
H13A0.3455470.4326040.1847300.100*
H13B0.4720130.4666140.2160860.100*
H13C0.4438240.3565530.2206420.100*
C140.1061 (2)0.6973 (2)0.1147 (2)0.0439 (7)
C150.0309 (3)0.7700 (3)0.1141 (3)0.0623 (9)
H150.0409180.7536190.1127520.075*
C160.0598 (4)0.8659 (3)0.1155 (3)0.0831 (12)
H160.0074930.9138270.1140290.100*
C170.1663 (4)0.8908 (3)0.1192 (3)0.0840 (12)
H170.1864020.9558200.1213030.101*
C180.2425 (3)0.8214 (3)0.1198 (3)0.0737 (11)
H180.3143670.8391360.1223140.088*
C190.2136 (3)0.7240 (3)0.1167 (2)0.0536 (8)
C200.0747 (2)0.5936 (2)0.1145 (2)0.0474 (7)
C210.0130 (2)0.6937 (2)0.1326 (2)0.0460 (7)
C220.0192 (2)0.7896 (2)0.1379 (2)0.0484 (8)
H220.0315050.8393710.1410320.058*
C230.1235 (2)0.8113 (2)0.1388 (2)0.0486 (8)
C240.1985 (2)0.7350 (2)0.1345 (2)0.0562 (9)
H240.2700640.7477880.1358660.067*
C250.1660 (2)0.6435 (2)0.1286 (3)0.0595 (9)
H250.2158660.5929960.1256250.071*
C260.1601 (3)0.9135 (2)0.1424 (3)0.0679 (10)
H26A0.0950630.9527530.1747570.102*
H26B0.2122280.9159610.1747000.102*
H26C0.1964410.9376710.0802380.102*
N10.41871 (18)0.37204 (17)0.08565 (18)0.0449 (6)
H10.4201950.3629380.1404230.054*
N20.2249 (2)0.3872 (2)0.1522 (2)0.0576 (7)
N30.0624 (2)0.62292 (19)0.12671 (19)0.0492 (6)
N40.1142 (2)0.6683 (2)0.1317 (3)0.0685 (9)
O10.5718 (2)0.1361 (2)0.1601 (2)0.0791 (8)
O20.25347 (17)0.15946 (19)0.17682 (17)0.0679 (7)
O30.43864 (17)0.1485 (2)0.25005 (16)0.0690 (7)
O40.2911 (2)0.6573 (2)0.1163 (2)0.0736 (8)
O50.01976 (16)0.57100 (16)0.11794 (16)0.0586 (6)
O60.14672 (18)0.53092 (16)0.11156 (18)0.0660 (7)
H1A0.552 (3)0.140 (3)0.2055 (19)0.103 (16)*
H2A0.1614 (15)0.391 (2)0.145 (2)0.061 (10)*
H2B0.230 (3)0.371 (2)0.2043 (13)0.067 (11)*
H3A0.044 (3)0.5637 (10)0.122 (2)0.058 (10)*
H4A0.127 (3)0.6079 (10)0.126 (3)0.080 (13)*
H4B0.160 (2)0.7161 (18)0.141 (3)0.081 (13)*
H4C0.259 (3)0.6048 (17)0.114 (3)0.108 (18)*
H110.593 (2)0.384 (2)0.131 (2)0.046 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0556 (18)0.0360 (16)0.0472 (19)0.0029 (14)0.0200 (15)0.0055 (14)
C60.079 (2)0.057 (2)0.058 (2)0.0116 (19)0.014 (2)0.0039 (18)
C50.135 (4)0.072 (3)0.058 (3)0.035 (3)0.021 (3)0.005 (2)
C40.177 (5)0.082 (3)0.065 (3)0.035 (4)0.066 (4)0.016 (3)
C30.119 (4)0.089 (3)0.088 (3)0.012 (3)0.073 (3)0.002 (3)
C20.069 (2)0.053 (2)0.060 (2)0.0050 (17)0.0352 (19)0.0029 (17)
C70.0419 (17)0.0506 (19)0.058 (2)0.0062 (14)0.0198 (16)0.0095 (16)
C80.0367 (15)0.0387 (16)0.059 (2)0.0004 (13)0.0240 (15)0.0010 (14)
C90.0358 (15)0.0468 (17)0.062 (2)0.0011 (13)0.0271 (15)0.0003 (15)
C100.0499 (17)0.0398 (16)0.058 (2)0.0008 (14)0.0291 (16)0.0024 (15)
C110.0403 (17)0.0522 (19)0.060 (2)0.0037 (15)0.0191 (16)0.0012 (16)
C120.0336 (15)0.0514 (19)0.073 (2)0.0040 (14)0.0264 (16)0.0015 (17)
C130.063 (2)0.078 (3)0.067 (2)0.0048 (19)0.0328 (19)0.002 (2)
C140.0360 (15)0.0543 (19)0.0413 (17)0.0023 (14)0.0139 (13)0.0021 (14)
C150.0512 (19)0.058 (2)0.080 (3)0.0002 (17)0.0265 (18)0.0047 (19)
C160.082 (3)0.059 (2)0.113 (4)0.003 (2)0.040 (3)0.006 (2)
C170.098 (3)0.055 (2)0.101 (3)0.020 (2)0.037 (3)0.009 (2)
C180.062 (2)0.080 (3)0.082 (3)0.025 (2)0.029 (2)0.004 (2)
C190.0444 (17)0.068 (2)0.051 (2)0.0070 (16)0.0192 (15)0.0012 (17)
C200.0392 (16)0.0555 (19)0.0497 (19)0.0003 (15)0.0187 (14)0.0012 (15)
C210.0357 (15)0.0540 (19)0.0486 (19)0.0037 (14)0.0156 (14)0.0019 (15)
C220.0392 (16)0.0510 (19)0.055 (2)0.0090 (14)0.0172 (14)0.0030 (15)
C230.0423 (16)0.0520 (19)0.0492 (19)0.0001 (14)0.0138 (14)0.0012 (15)
C240.0350 (15)0.057 (2)0.079 (2)0.0003 (15)0.0241 (16)0.0008 (18)
C250.0378 (16)0.056 (2)0.088 (3)0.0065 (15)0.0273 (17)0.0015 (19)
C260.060 (2)0.054 (2)0.091 (3)0.0061 (17)0.028 (2)0.0001 (19)
N10.0391 (13)0.0483 (15)0.0545 (16)0.0014 (11)0.0257 (12)0.0031 (12)
N20.0388 (15)0.079 (2)0.060 (2)0.0019 (14)0.0237 (15)0.0076 (16)
N30.0386 (13)0.0442 (16)0.0672 (18)0.0021 (12)0.0221 (12)0.0026 (14)
N40.0442 (16)0.058 (2)0.112 (3)0.0045 (16)0.0378 (17)0.010 (2)
O10.0539 (15)0.117 (2)0.082 (2)0.0055 (15)0.0422 (15)0.0129 (18)
O20.0421 (12)0.0922 (18)0.0738 (17)0.0151 (12)0.0262 (12)0.0163 (14)
O30.0417 (12)0.115 (2)0.0534 (15)0.0081 (13)0.0213 (11)0.0109 (14)
O40.0451 (13)0.088 (2)0.099 (2)0.0021 (14)0.0388 (14)0.0017 (17)
O50.0394 (11)0.0574 (14)0.0850 (17)0.0045 (10)0.0296 (11)0.0071 (12)
O60.0515 (13)0.0573 (14)0.103 (2)0.0036 (11)0.0444 (13)0.0021 (13)
Geometric parameters (Å, º) top
C1—C61.382 (4)C15—H150.9300
C1—C21.398 (4)C16—C171.373 (5)
C1—C71.477 (4)C16—H160.9300
C6—C51.365 (5)C17—C181.357 (5)
C6—H60.9300C17—H170.9300
C5—C41.371 (7)C18—C191.389 (5)
C5—H50.9300C18—H180.9300
C4—C31.372 (6)C19—O41.348 (4)
C4—H40.9300C20—O51.255 (3)
C3—C21.382 (5)C20—O61.271 (3)
C3—H30.9300C21—N41.333 (4)
C2—O11.352 (4)C21—N31.345 (4)
C7—O21.252 (3)C21—C221.396 (4)
C7—O31.269 (4)C22—C231.359 (4)
C8—N21.329 (4)C22—H220.9300
C8—N11.349 (3)C23—C241.403 (4)
C8—C91.399 (4)C23—C261.493 (4)
C9—C101.355 (4)C24—C251.343 (4)
C9—H90.9300C24—H240.9300
C10—C111.413 (4)C25—N31.352 (4)
C10—C131.501 (4)C25—H250.9300
C11—C121.345 (4)C26—H26A0.9600
C11—H111.01 (3)C26—H26B0.9600
C12—N11.347 (4)C26—H26C0.9600
C12—H120.9300N1—H10.8600
C13—H13A0.9600N2—H2A0.853 (10)
C13—H13B0.9600N2—H2B0.859 (10)
C13—H13C0.9600N3—H3A0.861 (10)
C14—C151.381 (4)N4—H4A0.860 (10)
C14—C191.400 (4)N4—H4B0.855 (10)
C14—C201.484 (4)O1—H1A0.825 (10)
C15—C161.371 (5)O4—H4C0.826 (10)
C6—C1—C2119.2 (3)C15—C16—H16120.2
C6—C1—C7119.6 (3)C17—C16—H16120.2
C2—C1—C7121.2 (3)C18—C17—C16120.6 (4)
C5—C6—C1121.4 (4)C18—C17—H17119.7
C5—C6—H6119.3C16—C17—H17119.7
C1—C6—H6119.3C17—C18—C19120.3 (3)
C6—C5—C4119.1 (4)C17—C18—H18119.8
C6—C5—H5120.5C19—C18—H18119.8
C4—C5—H5120.5O4—C19—C18118.6 (3)
C5—C4—C3121.2 (4)O4—C19—C14121.6 (3)
C5—C4—H4119.4C18—C19—C14119.8 (3)
C3—C4—H4119.4O5—C20—O6122.6 (3)
C4—C3—C2120.0 (4)O5—C20—C14119.9 (3)
C4—C3—H3120.0O6—C20—C14117.5 (2)
C2—C3—H3120.0N4—C21—N3118.0 (3)
O1—C2—C3118.3 (4)N4—C21—C22123.5 (3)
O1—C2—C1122.5 (3)N3—C21—C22118.5 (3)
C3—C2—C1119.2 (4)C23—C22—C21121.0 (3)
O2—C7—O3122.4 (3)C23—C22—H22119.5
O2—C7—C1119.9 (3)C21—C22—H22119.5
O3—C7—C1117.8 (3)C22—C23—C24118.6 (3)
N2—C8—N1118.5 (3)C22—C23—C26121.6 (3)
N2—C8—C9123.8 (3)C24—C23—C26119.8 (3)
N1—C8—C9117.7 (3)C25—C24—C23119.3 (3)
C10—C9—C8121.2 (3)C25—C24—H24120.3
C10—C9—H9119.4C23—C24—H24120.3
C8—C9—H9119.4C24—C25—N3121.5 (3)
C9—C10—C11119.0 (3)C24—C25—H25119.2
C9—C10—C13122.6 (3)N3—C25—H25119.2
C11—C10—C13118.4 (3)C23—C26—H26A109.5
C12—C11—C10118.6 (3)C23—C26—H26B109.5
C12—C11—H11122.1 (16)H26A—C26—H26B109.5
C10—C11—H11119.3 (16)C23—C26—H26C109.5
C11—C12—N1121.6 (3)H26A—C26—H26C109.5
C11—C12—H12119.2H26B—C26—H26C109.5
N1—C12—H12119.2C12—N1—C8121.9 (3)
C10—C13—H13A109.5C12—N1—H1119.1
C10—C13—H13B109.5C8—N1—H1119.1
H13A—C13—H13B109.5C8—N2—H2A118 (2)
C10—C13—H13C109.5C8—N2—H2B119 (2)
H13A—C13—H13C109.5H2A—N2—H2B122 (3)
H13B—C13—H13C109.5C21—N3—C25121.1 (3)
C15—C14—C19118.1 (3)C21—N3—H3A119 (2)
C15—C14—C20121.1 (3)C25—N3—H3A120 (2)
C19—C14—C20120.8 (3)C21—N4—H4A118 (2)
C16—C15—C14121.5 (3)C21—N4—H4B113 (3)
C16—C15—H15119.2H4A—N4—H4B129 (3)
C14—C15—H15119.2C2—O1—H1A108 (3)
C15—C16—C17119.6 (4)C19—O4—H4C105 (3)
C2—C1—C6—C50.6 (5)C15—C16—C17—C181.2 (7)
C7—C1—C6—C5179.6 (3)C16—C17—C18—C190.0 (6)
C1—C6—C5—C41.2 (6)C17—C18—C19—O4179.2 (4)
C6—C5—C4—C30.9 (7)C17—C18—C19—C141.2 (6)
C5—C4—C3—C20.0 (7)C15—C14—C19—O4179.2 (3)
C4—C3—C2—O1178.0 (4)C20—C14—C19—O41.6 (5)
C4—C3—C2—C10.5 (6)C15—C14—C19—C181.2 (5)
C6—C1—C2—O1178.2 (3)C20—C14—C19—C18178.0 (3)
C7—C1—C2—O12.0 (5)C15—C14—C20—O53.1 (5)
C6—C1—C2—C30.3 (5)C19—C14—C20—O5176.1 (3)
C7—C1—C2—C3179.5 (3)C15—C14—C20—O6177.4 (3)
C6—C1—C7—O21.7 (5)C19—C14—C20—O63.4 (4)
C2—C1—C7—O2178.5 (3)N4—C21—C22—C23179.9 (3)
C6—C1—C7—O3178.8 (3)N3—C21—C22—C231.0 (5)
C2—C1—C7—O31.0 (4)C21—C22—C23—C240.3 (5)
N2—C8—C9—C10179.9 (3)C21—C22—C23—C26178.7 (3)
N1—C8—C9—C101.3 (4)C22—C23—C24—C250.9 (5)
C8—C9—C10—C111.0 (4)C26—C23—C24—C25178.1 (3)
C8—C9—C10—C13177.7 (3)C23—C24—C25—N30.1 (5)
C9—C10—C11—C120.5 (5)C11—C12—N1—C80.6 (5)
C13—C10—C11—C12178.3 (3)N2—C8—N1—C12179.7 (3)
C10—C11—C12—N10.3 (5)C9—C8—N1—C121.1 (4)
C19—C14—C15—C160.1 (5)N4—C21—N3—C25179.0 (3)
C20—C14—C15—C16179.1 (3)C22—C21—N3—C251.8 (5)
C14—C15—C16—C171.1 (6)C24—C25—N3—C211.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O30.83 (1)1.81 (2)2.546 (3)149 (4)
O4—H4C···O60.83 (1)1.74 (2)2.508 (3)154 (4)
N1—H1···O3i0.861.792.648 (3)173
N2—H2B···O2i0.86 (1)2.00 (1)2.858 (4)175 (3)
N2—H2A···O5ii0.85 (1)2.05 (1)2.890 (3)168 (3)
N3—H3A···O5ii0.86 (1)1.89 (1)2.743 (3)172 (3)
N4—H4A···O6ii0.86 (1)1.96 (1)2.814 (4)177 (3)
N4—H4B···O2ii0.86 (1)2.05 (1)2.891 (4)170 (4)
C12—H12···O4iii0.932.523.390 (4)156
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1, z; (iii) x+1, y+1, z.
 

Acknowledgements

The authors acknowledge the SAIF, IIT, Madras for the data collection.

References

First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSivakumar, P., Sudhahar, S., Gunasekaran, B., Israel, S. & Chakkaravarthi, G. (2016b). IUCrData, 1, x160817.  Google Scholar
First citationSivakumar, P., Sudhahar, S., Israel, S. & Chakkaravarthi, G. (2016a). IUCrData, 1, x160747.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds