organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

N,N-Di­cyclo­hexyl­nitramine

CROSSMARK_Color_square_no_text.svg

aFaculty of Chemistry, University of Opole, Oleska 48, 45-052 Opole, Poland
*Correspondence e-mail: katarzyna.gajda@uni.opole.pl

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 8 September 2016; accepted 26 September 2016; online 30 September 2016)

Mol­ecules of the title compound, C12H22N2O2, are composed of an nitramine group substituted by two cyclo­hexane rings. The cyclo­hexane rings have chair conformations, with the exocyclic C—N bonds in axial orientations. In the crystal, C—H⋯O hydrogen bonds connect the mol­ecules into C(6) [-101] zigzag chains.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The study of the chemistry of aliphatic nitroso­amines began in 1863 when Geuther obtained N-nitro­sodi­ethyl­amine by the reaction of di­ethyl­amine hydro­chloride with sodium nitrite (Taylor & Price, 1929[Taylor, T. W. J. & Price, L. S. (1929). J. Chem. Soc. pp. 2052-2059.]). Many nitro­samines showed carcinogenic properties for animals but it is difficult to determine these properties for humans because of the very low typical absorption. For this reason, determination of the danger for humans is very complicated (Crosby & Sawyer, 1976[Crosby, N. T. & Sawyer, R. (1976). Adv. Food Res. 22, 1-71.]).

The amide group is substituted by two cyclo­hexane rings (Fig. 1[link]). The N1—N2 bond length is notably shorter [1.3509 (13) Å] than the distance characteristic of an N—N single bond (1.42 Å) but longer than the distance of an N=N double bond (1.24 Å), indicating partial double-bond character. The geometry of the nitramine group is typical, and corresponds well with similar compounds (Prezhdo et al., 2001b[Prezhdo, V. V., Bykova, A. S., Głowiak, T., Daszkiewicz, Z., Koll, A. & Kyzioł, J. (2001b). J. Struct. Chem. 42, 513-517.]; Zarychta et al., 2005a[Zarychta, B., Daszkiewicz, Z. & Zaleski, J. (2005a). Acta Cryst. E61, o1897-o1899.],b[Zarychta, B., Piecyk-Mizgała, A., Daszkiewicz, Z. & Zaleski, J. (2005b). Acta Cryst. C61, o515-o517.], 2011[Zarychta, B., Zaleski, J., Kyzioł, J., Daszkiewicz, Z. & Jelsch, C. (2011). Acta Cryst. B67, 250-262.]). Both cyclo­hexane rings have chair conformations with the exocyclic C—N bonds in axial orientations.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.

The crystal structure features weak C—H⋯O inter­actions, which connect the mol­ecules into [[\overline{1}]01] C11(6) zigzag chains (Table 1[link]). The packing is shown in Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O2i 0.97 2.60 3.5684 (14) 176
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
The crystal packing of the title compound, viewed along the a axis.

Synthesis and crystallization

N,N-di­methyl­nitramine was prepared as follows (Prezhdo et al., 2001a[Prezhdo, V. V., Bykova, A. S., Daszkiewicz, Z., Hałas, M., Iwaszkiewicz-Kostka, I., Prezhdo, O. V., Kyzioł, J. B. & Błaszczak, Z. (2001a). Zh. Obshch. Khim. 71, 966-976.]). To a solution of 1.05 g of N-nitro­sodi­cyclo­hexyl­amine in 50 ml of acetone was added 25 ml of a buffer solution containing 6 g of K2HPO4 and 0.7 g of KH2PO4 and then, in four portions over a period of 4 h, 3 g of oxone (2KHSO5·KHSO4·K2SO4) and stirred for the next 3 h. The product was extracted with methyl­ene chloride (4 × 25 ml). The extract was dried over anhydrous magnesium sulfate, the solvent was evaporated, and the residue was recrystallized from iso-octane solution. Yield = 0.8 g, m.p. 137–138°C.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C12H22N2O2
Mr 226.31
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 5.9136 (1), 19.1658 (4), 10.8946 (2)
β (°) 91.852 (2)
V3) 1234.14 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.04 × 0.04 × 0.03
 
Data collection
Diffractometer Oxford Diffraction Xcalibur CCD
Absorption correction
No. of measured, independent and observed [I > 2σ(I)] reflections 8287, 2425, 1892
Rint 0.022
(sin θ/λ)max−1) 0.616
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.084, 1.07
No. of reflections 2425
No. of parameters 145
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.18, −0.15
Computer programs: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]), SHELXS2014 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Structural data


Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis CCD (Oxford Diffraction, 2008); data reduction: CrysAlis CCD (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

N-Cyclohexyl-N-nitrocyclohexanamine top
Crystal data top
C12H22N2O2F(000) = 496
Mr = 226.31Dx = 1.218 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 5.9136 (1) ÅCell parameters from 8287 reflections
b = 19.1658 (4) Åθ = 3.6–26.0°
c = 10.8946 (2) ŵ = 0.08 mm1
β = 91.852 (2)°T = 100 K
V = 1234.14 (4) Å3Plate, colourless
Z = 40.04 × 0.04 × 0.03 mm
Data collection top
Oxford Diffraction Xcalibur CCD
diffractometer
1892 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.022
Detector resolution: 1024 x 1024 with blocks 2 x 2 pixels mm-1θmax = 26.0°, θmin = 3.6°
ω–scanh = 77
8287 measured reflectionsk = 2323
2425 independent reflectionsl = 1310
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.0401P)2 + 0.1204P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2425 reflectionsΔρmax = 0.18 e Å3
145 parametersΔρmin = 0.15 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.72029 (16)0.12483 (4)0.64176 (8)0.0372 (2)
O20.64140 (15)0.23560 (5)0.64377 (8)0.0380 (2)
N10.83491 (16)0.19259 (5)0.49004 (9)0.0257 (2)
N20.72928 (17)0.18401 (5)0.59711 (9)0.0269 (2)
C10.94810 (19)0.13124 (6)0.43775 (10)0.0229 (3)
H1A0.88950.09010.47950.027*
C20.8906 (2)0.12227 (6)0.30137 (11)0.0272 (3)
H2A0.95190.16090.25560.033*
H2B0.72770.12180.28770.033*
C30.9913 (2)0.05376 (6)0.25735 (12)0.0332 (3)
H3A0.91910.01510.29820.040*
H3B0.96100.04890.16970.040*
C41.2452 (2)0.05060 (7)0.28348 (12)0.0334 (3)
H4A1.30100.00500.26060.040*
H4B1.31940.08520.23370.040*
C51.3044 (2)0.06395 (6)0.41772 (12)0.0324 (3)
H5A1.46770.06570.42930.039*
H5B1.24880.02570.46650.039*
C61.20285 (19)0.13213 (6)0.46228 (11)0.0267 (3)
H6A1.23560.13770.54950.032*
H6B1.26930.17110.41970.032*
C70.87648 (19)0.26368 (6)0.44305 (11)0.0238 (3)
H7A0.96830.25720.37060.029*
C80.6611 (2)0.30047 (6)0.39599 (12)0.0295 (3)
H8A0.58200.27110.33610.035*
H8B0.56170.30840.46370.035*
C90.7201 (2)0.36990 (6)0.33712 (12)0.0316 (3)
H9A0.80510.36140.26390.038*
H9B0.58170.39400.31250.038*
C100.8586 (2)0.41578 (6)0.42459 (12)0.0325 (3)
H10A0.76870.42800.49430.039*
H10B0.89880.45860.38310.039*
C111.0727 (2)0.37853 (6)0.46953 (12)0.0319 (3)
H11A1.15480.40810.52790.038*
H11B1.16910.37030.40060.038*
C121.0191 (2)0.30900 (6)0.53055 (11)0.0281 (3)
H12A1.15880.28500.55290.034*
H12B0.93740.31730.60490.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0500 (6)0.0309 (5)0.0315 (5)0.0028 (4)0.0135 (4)0.0110 (4)
O20.0488 (6)0.0336 (5)0.0326 (5)0.0083 (4)0.0195 (4)0.0017 (4)
N10.0321 (6)0.0234 (5)0.0221 (5)0.0019 (4)0.0107 (4)0.0028 (4)
N20.0291 (5)0.0294 (6)0.0224 (5)0.0017 (4)0.0055 (4)0.0030 (4)
C10.0263 (6)0.0199 (6)0.0227 (6)0.0002 (5)0.0038 (5)0.0010 (5)
C20.0249 (6)0.0288 (7)0.0277 (6)0.0029 (5)0.0031 (5)0.0019 (5)
C30.0415 (8)0.0301 (7)0.0283 (7)0.0070 (6)0.0042 (6)0.0075 (5)
C40.0401 (7)0.0249 (7)0.0359 (7)0.0043 (6)0.0120 (6)0.0001 (5)
C50.0280 (7)0.0325 (7)0.0370 (7)0.0061 (5)0.0040 (5)0.0077 (6)
C60.0277 (7)0.0289 (6)0.0232 (6)0.0001 (5)0.0034 (5)0.0019 (5)
C70.0283 (6)0.0208 (6)0.0227 (6)0.0008 (5)0.0055 (5)0.0015 (5)
C80.0273 (6)0.0295 (7)0.0315 (7)0.0001 (5)0.0007 (5)0.0029 (5)
C90.0317 (7)0.0322 (7)0.0308 (7)0.0048 (5)0.0007 (5)0.0082 (5)
C100.0393 (7)0.0235 (6)0.0351 (7)0.0029 (6)0.0065 (6)0.0018 (5)
C110.0322 (7)0.0290 (7)0.0345 (7)0.0045 (5)0.0006 (5)0.0023 (5)
C120.0308 (6)0.0260 (6)0.0274 (6)0.0037 (5)0.0016 (5)0.0014 (5)
Geometric parameters (Å, º) top
O1—N21.2360 (12)C6—H6A0.9700
O2—N21.2342 (12)C6—H6B0.9700
N1—N21.3509 (13)C7—C121.5238 (16)
N1—C11.4764 (14)C7—C81.5297 (16)
N1—C71.4789 (14)C7—H7A0.9800
C1—C61.5216 (16)C8—C91.5225 (16)
C1—C21.5231 (16)C8—H8A0.9700
C1—H1A0.9800C8—H8B0.9700
C2—C31.5255 (17)C9—C101.5172 (18)
C2—H2A0.9700C9—H9A0.9700
C2—H2B0.9700C9—H9B0.9700
C3—C41.5202 (18)C10—C111.5206 (18)
C3—H3A0.9700C10—H10A0.9700
C3—H3B0.9700C10—H10B0.9700
C4—C51.5145 (18)C11—C121.5271 (17)
C4—H4A0.9700C11—H11A0.9700
C4—H4B0.9700C11—H11B0.9700
C5—C61.5240 (16)C12—H12A0.9700
C5—H5A0.9700C12—H12B0.9700
C5—H5B0.9700
N2—N1—C1117.66 (9)C1—C6—H6B109.8
N2—N1—C7119.84 (9)C5—C6—H6B109.8
C1—N1—C7121.18 (9)H6A—C6—H6B108.2
O2—N2—O1123.29 (9)N1—C7—C12113.79 (9)
O2—N2—N1118.09 (9)N1—C7—C8113.25 (9)
O1—N2—N1118.59 (9)C12—C7—C8112.64 (10)
N1—C1—C6112.45 (9)N1—C7—H7A105.4
N1—C1—C2112.12 (9)C12—C7—H7A105.4
C6—C1—C2111.17 (9)C8—C7—H7A105.4
N1—C1—H1A106.9C9—C8—C7110.15 (10)
C6—C1—H1A106.9C9—C8—H8A109.6
C2—C1—H1A106.9C7—C8—H8A109.6
C1—C2—C3109.07 (10)C9—C8—H8B109.6
C1—C2—H2A109.9C7—C8—H8B109.6
C3—C2—H2A109.9H8A—C8—H8B108.1
C1—C2—H2B109.9C10—C9—C8111.61 (10)
C3—C2—H2B109.9C10—C9—H9A109.3
H2A—C2—H2B108.3C8—C9—H9A109.3
C4—C3—C2111.63 (10)C10—C9—H9B109.3
C4—C3—H3A109.3C8—C9—H9B109.3
C2—C3—H3A109.3H9A—C9—H9B108.0
C4—C3—H3B109.3C9—C10—C11110.93 (10)
C2—C3—H3B109.3C9—C10—H10A109.5
H3A—C3—H3B108.0C11—C10—H10A109.5
C5—C4—C3111.73 (10)C9—C10—H10B109.5
C5—C4—H4A109.3C11—C10—H10B109.5
C3—C4—H4A109.3H10A—C10—H10B108.0
C5—C4—H4B109.3C10—C11—C12111.54 (10)
C3—C4—H4B109.3C10—C11—H11A109.3
H4A—C4—H4B107.9C12—C11—H11A109.3
C4—C5—C6111.79 (10)C10—C11—H11B109.3
C4—C5—H5A109.3C12—C11—H11B109.3
C6—C5—H5A109.3H11A—C11—H11B108.0
C4—C5—H5B109.3C7—C12—C11110.10 (10)
C6—C5—H5B109.3C7—C12—H12A109.6
H5A—C5—H5B107.9C11—C12—H12A109.6
C1—C6—C5109.42 (10)C7—C12—H12B109.6
C1—C6—H6A109.8C11—C12—H12B109.6
C5—C6—H6A109.8H12A—C12—H12B108.2
C1—N1—N2—O2177.38 (10)C2—C1—C6—C559.24 (12)
C7—N1—N2—O210.30 (16)C4—C5—C6—C155.84 (13)
C1—N1—N2—O14.46 (15)N2—N1—C7—C1258.93 (14)
C7—N1—N2—O1171.54 (10)C1—N1—C7—C12107.69 (12)
N2—N1—C1—C6100.93 (12)N2—N1—C7—C871.41 (13)
C7—N1—C1—C665.97 (13)C1—N1—C7—C8121.98 (11)
N2—N1—C1—C2132.93 (11)N1—C7—C8—C9174.08 (9)
C7—N1—C1—C260.17 (13)C12—C7—C8—C955.01 (13)
N1—C1—C2—C3173.68 (9)C7—C8—C9—C1055.28 (13)
C6—C1—C2—C359.49 (12)C8—C9—C10—C1156.61 (14)
C1—C2—C3—C456.37 (13)C9—C10—C11—C1256.53 (14)
C2—C3—C4—C554.20 (14)N1—C7—C12—C11174.42 (9)
C3—C4—C5—C653.84 (14)C8—C7—C12—C1154.94 (13)
N1—C1—C6—C5174.10 (9)C10—C11—C12—C755.23 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O2i0.972.603.5684 (14)176
Symmetry code: (i) x+1/2, y+1/2, z1/2.
 

References

First citationCrosby, N. T. & Sawyer, R. (1976). Adv. Food Res. 22, 1–71.  CrossRef CAS PubMed Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPrezhdo, V. V., Bykova, A. S., Daszkiewicz, Z., Hałas, M., Iwaszkiewicz-Kostka, I., Prezhdo, O. V., Kyzioł, J. B. & Błaszczak, Z. (2001a). Zh. Obshch. Khim. 71, 966–976.  Google Scholar
First citationPrezhdo, V. V., Bykova, A. S., Głowiak, T., Daszkiewicz, Z., Koll, A. & Kyzioł, J. (2001b). J. Struct. Chem. 42, 513–517.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTaylor, T. W. J. & Price, L. S. (1929). J. Chem. Soc. pp. 2052–2059.  CrossRef Google Scholar
First citationZarychta, B., Daszkiewicz, Z. & Zaleski, J. (2005a). Acta Cryst. E61, o1897–o1899.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZarychta, B., Piecyk-Mizgała, A., Daszkiewicz, Z. & Zaleski, J. (2005b). Acta Cryst. C61, o515–o517.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationZarychta, B., Zaleski, J., Kyzioł, J., Daszkiewicz, Z. & Jelsch, C. (2011). Acta Cryst. B67, 250–262.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds