organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-(2-Aza­bi­cyclo­[3.2.1]octa-3,6-dien-2-yl)-1,3-di­meth­­oxy­imidazolium hexa­fluorido­phosphate

aUniversity of Innsbruck, Faculty of Chemistry and Pharmacy, Innrain 80, 6020 Innsbruck, Austria
*Correspondence e-mail: gerhard.laus@uibk.ac.at

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 1 September 2016; accepted 5 September 2016; online 9 September 2016)

The title salt, C12H16N3O2+·PF6, was obtained by the dipolar cyclo­addition of norbornadiene to 2-azido-1,3-di­meth­oxy­imidazolium hexa­fluorido­phosphate. The meth­oxy groups attached to the imidazolium ring of the cation adopt an anti conformation [displacements of the C atoms from the ring plane = 1.386 (4) and −1.404 (3) Å]. In the crystal, weak inter-ionic C—H⋯F contacts are observed. The structure was refined as a two-component twin. Positional disorder of the fluorine atoms of the PF6 anion was observed, the occupancy ratio being 0.562 (16):0.438 (16).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The 1,3-dipolar cyclo­addition of strained alkenes such as norbornene or norbornadiene to azido­azolium salts with concomitant loss of di­nitro­gen affords tricyclic aziridines or bicyclic aza­octa­dienes, respectively (Laus, Kahlenberg et al., 2016[Laus, G., Kahlenberg, V. & Schottenberger, H. (2016). Crystals, 6, 20.]; Laus, Kostner et al., 2016[Laus, G., Kostner, M. E., Kahlenberg, V. & Schottenberger, H. (2016). Z. Naturforsch. Teil B, 71, 997-1003.]). Thus, the title compound was obtained from bi­cyclo­[2.2.1]hepta-2,5-diene (norbornadiene) and 2-azido-1,3-di­meth­oxy­imidazolium hexa­fluorido­phosphate.

Conformational syn/anti isomerism in related 1,3-di(alk­yloxy)imidazolium salts has been noticed previously (Laus et al., 2007[Laus, G., Schwärzler, A., Schuster, P., Bentivoglio, G., Hummel, M., Wurst, K., Kahlenberg, V., Lörting, T., Schütz, J., Peringer, P., Bonn, G., Nauer, G. & Schottenberger, H. (2007). Z. Naturforsch. Teil B, 62, 295-308.]; Laus, Kahlenberg et al., 2010[Laus, G., Kahlenberg, V. & Schottenberger, H. (2010). Z. Kristallogr. New Cryst. Struct. 225, 759-760.]; Laus, Wurst et al., 2010[Laus, G., Wurst, K., Kahlenberg, V., Kopacka, H., Kreutz, C. & Schottenberger, H. (2010). Z. Naturforsch. Teil B, 65, 776-782.]; Froschauer et al., 2013[Froschauer, C., Salchner, R., Laus, G., Weber, H. K., Tessadri, R., Griesser, U., Wurst, K., Kahlenberg, V. & Schottenberger, H. (2013). Aust. J. Chem. 66, 391-395.]; Rietzler et al., 2015[Rietzler, B., Laus, G., Kahlenberg, V. & Schottenberger, H. (2015). Acta Cryst. E71, m251-m252.]; Partl et al., 2016[Partl, G., Lampl, M., Laus, G., Wurst, K., Huppertz, H. & Schottenberger, H. (2016). IUCrData, 1, x160824.]). Here, the meth­oxy groups of the norbornadiene adduct adopt an anti conformation (Fig. 1[link]). The C4 atom is displaced from the ring plane by 1.386 (4), and C5 by −1.404 (3) Å. A C4—O1⋯O2—C5 pseudo dihedral angle of 168.4 (3)° is found.

[Figure 1]
Figure 1
The mol­ecular structure of the cation of the title compound, showing 50% probability displacement ellipsoids. The anion is not shown.

There are no directional classical hydrogen bonds in this structure. At the most, weak C—H⋯F inter­actions (H2⋯F5 = 2.36, H3⋯F6 = 2.42 and H5A⋯F5 = 2.53 Å) shorter than the sum of van der Waals radii between the imidazole H atoms and negatively polarized F atoms are worth mentioning (Table 1[link]; Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯F5i 0.95 2.36 3.242 (12) 154
C2—H2⋯F5Ai 0.95 2.36 3.23 (2) 153
C3—H3⋯F6 0.95 2.42 3.365 (11) 171
C4—H4A⋯F6Aii 0.98 2.49 3.21 (2) 131
C4—H4B⋯F2Aiii 0.98 2.51 3.383 (17) 148
C5—H5A⋯F5iv 0.98 2.53 3.134 (11) 120
C5—H5A⋯F5Aiv 0.98 2.34 3.02 (2) 125
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y+1, -z+1; (iii) -x+2, -y+1, -z+1; (iv) -x+3, -y, -z+1.
[Figure 2]
Figure 2
Crystal packing of the title compound. The C—H⋯F inter­actions are shown as dashed lines.

Synthesis and crystallization

A solution of 2-azido-1,3-di­meth­oxy­imidazolium hexa­fluorido­phosphate (0.38 g, 1.2 mmol; Laus et al., 2007[Laus, G., Schwärzler, A., Schuster, P., Bentivoglio, G., Hummel, M., Wurst, K., Kahlenberg, V., Lörting, T., Schütz, J., Peringer, P., Bonn, G., Nauer, G. & Schottenberger, H. (2007). Z. Naturforsch. Teil B, 62, 295-308.]) and norbornadiene (0.13 g, 1.4 mmol) in acetone (20 ml) was stirred for 18 h at room temperature. The volatiles were removed under reduced pressure, and the residue was crystallized from H2O/acetone. 1H NMR (300 MHz, DMSO-d6): δ 1.86 (d, J = 10.6 Hz, 1H), 2.00 (m, 1H), 2.87 (m, 1H), 4.12 (s, 6H), 4.76 (s, 1H), 5.40 (td, J = 6.4, 1.3 Hz, 1H), 5.68 (dd, J = 2.3, 5.5 Hz, 1H), 6.06 (dd, J = 0.9, 7.7 Hz, 1H), 6.41 (dd, J = 2.7, 5.4 Hz, 1H), 8.00 (s, 2H) p.p.m. 13C NMR (75 MHz, DMSO-d6): δ 35.2, 36.2, 63.8, 68.0 (2 C), 109.6, 112.4 (2 C), 121.2, 122.4, 134.8, 139.4 p.p.m. IR (neat): ν 3173, 3151, 1627, 1614, 827 cm−1.

Refinement

The structure was refined as a two-component twin with non-merohedral twinning by 180 degrees about the reciprocal axis 0 0 1. In addition, positional disorder of the fluorine atoms of the PF6 anion was observed; the occupancy ratio of 0.562 (16):0.438 (16) for the two orientations was obtained by refinement with a free variable. Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C12H16N3O2+·PF6
Mr 379.25
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 173
a, b, c (Å) 7.4207 (6), 8.8159 (7), 12.5246 (10)
α, β, γ (°) 86.873 (3), 87.735 (3), 77.166 (3)
V3) 797.39 (11)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.25
Crystal size (mm) 0.18 × 0.17 × 0.09
 
Data collection
Diffractometer Bruker D8 QUEST PHOTON 100
Absorption correction Multi-scan (DIFABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and DIFABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.792, 0.862
No. of measured, independent and observed [I > 2σ(I)] reflections 2774, 2774, 2501
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.124, 1.12
No. of reflections 2774
No. of parameters 273
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.40, −0.31
Computer programs: APEX2 (Bruker, 2014[Bruker (2014). APEX2, SAINT and DIFABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and DIFABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2014/7 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS2014/7 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: Mercury (Macrae et al., 2006).

2-(2-Azabicyclo[3.2.1]octa-3,6-dien-2-yl)-1,3-dimethoxyimidazolium hexafluoridophosphate top
Crystal data top
C12H16N3O2+·PF6Z = 2
Mr = 379.25F(000) = 388
Triclinic, P1Dx = 1.580 Mg m3
a = 7.4207 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.8159 (7) ÅCell parameters from 4024 reflections
c = 12.5246 (10) Åθ = 2.8–25.3°
α = 86.873 (3)°µ = 0.25 mm1
β = 87.735 (3)°T = 173 K
γ = 77.166 (3)°Prism, brown
V = 797.39 (11) Å30.18 × 0.17 × 0.09 mm
Data collection top
Bruker D8 QUEST PHOTON 100
diffractometer
2774 measured reflections
Radiation source: Incoatec Microfocus2774 independent reflections
Multi layered optics monochromator2501 reflections with I > 2σ(I)
Detector resolution: 10.4 pixels mm-1θmax = 25.0°, θmin = 2.4°
φ and ω scansh = 88
Absorption correction: multi-scan
(DIFABS; Bruker, 2014)
k = 1010
Tmin = 0.792, Tmax = 0.862l = 014
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.124 w = 1/[σ2(Fo2) + (0.031P)2 + 0.897P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
2774 reflectionsΔρmax = 0.40 e Å3
273 parametersΔρmin = 0.31 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin with non-merohedral twinning by 180 degrees about the reciprocal axis 0 0 1. Programs like "cell_now" and "twinabs" (Bruker) were used for cell search of twin components and absorption correction. Positional disorder of the fluorine atoms of PF6; ratio of 56:44 was obtained by using refinement with free variable.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.4239 (4)0.2863 (3)0.7117 (3)0.0505 (8)
O21.0715 (3)0.2143 (3)0.6834 (3)0.0429 (7)
N10.6012 (4)0.2657 (4)0.6683 (3)0.0417 (8)
N20.8907 (4)0.2373 (4)0.6560 (3)0.0367 (8)
N30.7628 (4)0.2455 (4)0.8350 (2)0.0372 (8)
C10.7505 (6)0.2487 (5)0.7279 (3)0.0335 (8)
C20.6461 (7)0.2612 (5)0.5602 (4)0.0513 (11)
H20.56390.26660.50320.062*
C30.8300 (7)0.2476 (5)0.5526 (3)0.0470 (11)
H30.90360.24540.48870.056*
C40.3311 (7)0.4469 (5)0.6979 (5)0.0724 (16)
H4A0.20530.46140.72870.109*
H4B0.39890.51170.73420.109*
H4C0.32560.47740.62150.109*
C51.1633 (6)0.0519 (4)0.6758 (4)0.0513 (11)
H5A1.29270.03740.69570.077*
H5B1.10110.01240.72440.077*
H5C1.15830.02080.60220.077*
C60.6429 (6)0.1744 (5)0.9028 (3)0.0462 (10)
H60.56420.11710.87330.055*
C70.6429 (8)0.1896 (6)1.0083 (4)0.0650 (14)
H70.56670.13981.05440.078*
C80.7627 (11)0.2851 (7)1.0546 (4)0.0775 (17)
H80.72800.31471.12980.093*
C90.9570 (10)0.1996 (7)1.0392 (5)0.0832 (19)
H91.02450.13151.09230.100*
C101.0243 (8)0.2281 (6)0.9454 (5)0.0685 (15)
H101.14620.18520.91980.082*
C110.8821 (6)0.3375 (5)0.8847 (3)0.0428 (10)
H110.93480.40580.83150.051*
C120.7620 (8)0.4288 (6)0.9721 (4)0.0673 (15)
H12A0.63630.47790.94770.081*
H12B0.82010.50821.00090.081*
P11.26751 (15)0.24411 (11)0.32028 (8)0.0327 (2)
F11.2604 (10)0.1998 (16)0.4404 (5)0.095 (5)0.562 (16)
F21.2768 (14)0.2929 (17)0.1975 (5)0.104 (4)0.562 (16)
F31.2520 (13)0.4160 (9)0.3478 (14)0.115 (5)0.562 (16)
F41.285 (2)0.0749 (9)0.2887 (15)0.137 (7)0.562 (16)
F51.4859 (13)0.2220 (13)0.3286 (9)0.068 (3)0.562 (16)
F61.0517 (15)0.2681 (14)0.3144 (8)0.066 (3)0.562 (16)
F1A1.201 (3)0.1183 (18)0.387 (2)0.205 (11)0.438 (16)
F2A1.315 (2)0.382 (2)0.258 (2)0.159 (9)0.438 (16)
F3A1.232 (2)0.341 (2)0.4227 (13)0.134 (7)0.438 (16)
F4A1.305 (2)0.139 (3)0.2291 (15)0.149 (9)0.438 (16)
F5A1.470 (2)0.177 (3)0.345 (2)0.184 (11)0.438 (16)
F6A1.067 (2)0.318 (3)0.2936 (18)0.135 (8)0.438 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0267 (15)0.0486 (17)0.078 (2)0.0131 (13)0.0037 (14)0.0034 (15)
O20.0269 (13)0.0386 (14)0.0639 (19)0.0073 (11)0.0018 (14)0.0100 (15)
N10.0323 (17)0.0449 (18)0.051 (2)0.0143 (14)0.0047 (17)0.0025 (17)
N20.0301 (17)0.0390 (17)0.042 (2)0.0095 (13)0.0010 (14)0.0058 (14)
N30.0345 (19)0.0411 (19)0.0392 (17)0.0147 (14)0.0014 (14)0.0049 (15)
C10.0320 (19)0.0313 (19)0.0403 (19)0.0141 (15)0.0001 (18)0.0009 (17)
C20.060 (3)0.055 (3)0.042 (3)0.017 (2)0.016 (2)0.005 (2)
C30.060 (3)0.047 (2)0.037 (2)0.017 (2)0.001 (2)0.0073 (19)
C40.047 (3)0.050 (3)0.121 (5)0.011 (2)0.010 (3)0.017 (3)
C50.044 (2)0.035 (2)0.072 (3)0.0010 (17)0.001 (2)0.010 (2)
C60.047 (2)0.047 (2)0.047 (3)0.017 (2)0.009 (2)0.003 (2)
C70.087 (4)0.055 (3)0.057 (3)0.029 (3)0.021 (3)0.006 (2)
C80.120 (5)0.078 (4)0.045 (3)0.041 (4)0.012 (4)0.023 (3)
C90.124 (6)0.079 (4)0.058 (4)0.044 (4)0.029 (4)0.002 (3)
C100.077 (4)0.059 (3)0.077 (4)0.025 (3)0.030 (3)0.005 (3)
C110.048 (2)0.039 (2)0.046 (2)0.0162 (18)0.0029 (19)0.0122 (18)
C120.093 (4)0.059 (3)0.055 (3)0.025 (3)0.014 (3)0.024 (3)
P10.0377 (5)0.0274 (4)0.0329 (5)0.0070 (3)0.0026 (5)0.0024 (5)
F10.080 (5)0.183 (13)0.025 (3)0.041 (6)0.002 (3)0.031 (5)
F20.110 (6)0.161 (12)0.034 (3)0.025 (6)0.000 (4)0.028 (5)
F30.099 (6)0.040 (4)0.210 (15)0.021 (4)0.032 (8)0.048 (6)
F40.138 (8)0.028 (4)0.252 (19)0.028 (4)0.020 (11)0.052 (6)
F50.040 (4)0.099 (6)0.068 (5)0.024 (5)0.001 (3)0.010 (4)
F60.044 (4)0.099 (7)0.064 (4)0.028 (4)0.005 (3)0.028 (5)
F1A0.31 (3)0.088 (9)0.22 (2)0.074 (12)0.124 (19)0.038 (11)
F2A0.155 (13)0.109 (12)0.22 (2)0.067 (10)0.010 (13)0.107 (14)
F3A0.165 (12)0.127 (15)0.110 (12)0.009 (10)0.000 (9)0.101 (11)
F4A0.136 (11)0.19 (2)0.117 (13)0.003 (14)0.002 (10)0.141 (14)
F5A0.098 (12)0.169 (16)0.24 (2)0.101 (11)0.103 (13)0.121 (14)
F6A0.047 (8)0.133 (14)0.208 (17)0.017 (8)0.059 (9)0.014 (11)
Geometric parameters (Å, º) top
O1—N11.380 (4)C8—C91.481 (9)
O1—C41.435 (5)C8—C121.590 (8)
O2—N21.366 (4)C8—H81.0000
O2—C51.449 (4)C9—C101.293 (9)
N1—C11.336 (5)C9—H90.9500
N1—C21.382 (6)C10—C111.467 (7)
N2—C11.339 (5)C10—H100.9500
N2—C31.379 (5)C11—C121.529 (6)
N3—C11.347 (5)C11—H111.0000
N3—C61.426 (5)C12—H12A0.9900
N3—C111.499 (5)C12—H12B0.9900
C2—C31.343 (6)P1—F4A1.489 (9)
C2—H20.9500P1—F2A1.504 (9)
C3—H30.9500P1—F1A1.511 (10)
C4—H4A0.9800P1—F5A1.523 (15)
C4—H4B0.9800P1—F6A1.528 (15)
C4—H4C0.9800P1—F11.535 (5)
C5—H5A0.9800P1—F41.540 (7)
C5—H5B0.9800P1—F31.550 (7)
C5—H5C0.9800P1—F3A1.562 (9)
C6—C71.335 (6)P1—F61.572 (11)
C6—H60.9500P1—F21.577 (6)
C7—C81.504 (8)P1—F51.596 (9)
C7—H70.9500
N1—O1—C4109.6 (3)C8—C9—H9123.8
N2—O2—C5110.5 (3)C9—C10—C11109.0 (6)
C1—N1—O1123.0 (4)C9—C10—H10125.5
C1—N1—C2112.1 (4)C11—C10—H10125.5
O1—N1—C2124.9 (4)C10—C11—N3108.0 (4)
C1—N2—O2123.3 (3)C10—C11—C12103.2 (4)
C1—N2—C3111.7 (3)N3—C11—C12106.1 (4)
O2—N2—C3124.9 (3)C10—C11—H11113.0
C1—N3—C6120.6 (3)N3—C11—H11113.0
C1—N3—C11120.1 (3)C12—C11—H11113.0
C6—N3—C11118.7 (3)C11—C12—C896.9 (4)
N1—C1—N2104.0 (3)C11—C12—H12A112.4
N1—C1—N3129.5 (4)C8—C12—H12A112.4
N2—C1—N3126.5 (4)C11—C12—H12B112.4
C3—C2—N1105.7 (4)C8—C12—H12B112.4
C3—C2—H2127.2H12A—C12—H12B109.9
N1—C2—H2127.2F4A—P1—F2A95.0 (11)
C2—C3—N2106.4 (4)F4A—P1—F1A89.4 (11)
C2—C3—H3126.8F2A—P1—F1A173.8 (11)
N2—C3—H3126.8F4A—P1—F5A84.3 (10)
O1—C4—H4A109.5F2A—P1—F5A91.4 (12)
O1—C4—H4B109.5F1A—P1—F5A93.4 (13)
H4A—C4—H4B109.5F4A—P1—F6A96.4 (10)
O1—C4—H4C109.5F2A—P1—F6A85.9 (10)
H4A—C4—H4C109.5F1A—P1—F6A89.3 (11)
H4B—C4—H4C109.5F5A—P1—F6A177.3 (12)
O2—C5—H5A109.5F1—P1—F492.9 (7)
O2—C5—H5B109.5F1—P1—F389.2 (7)
H5A—C5—H5B109.5F4—P1—F3177.9 (8)
O2—C5—H5C109.5F4A—P1—F3A174.9 (11)
H5A—C5—H5C109.5F2A—P1—F3A89.6 (11)
H5B—C5—H5C109.5F1A—P1—F3A86.2 (9)
C7—C6—N3119.1 (4)F5A—P1—F3A93.4 (10)
C7—C6—H6120.4F6A—P1—F3A86.1 (10)
N3—C6—H6120.4F1—P1—F691.1 (5)
C6—C7—C8120.4 (4)F4—P1—F688.4 (7)
C6—C7—H7119.8F3—P1—F692.1 (5)
C8—C7—H7119.8F1—P1—F2178.7 (7)
C9—C8—C7107.0 (5)F4—P1—F288.3 (7)
C9—C8—C1299.4 (5)F3—P1—F289.6 (7)
C7—C8—C12106.2 (4)F6—P1—F289.5 (5)
C9—C8—H8114.3F1—P1—F588.0 (5)
C7—C8—H8114.3F4—P1—F592.6 (7)
C12—C8—H8114.3F3—P1—F587.0 (5)
C10—C9—C8112.4 (6)F6—P1—F5178.7 (5)
C10—C9—H9123.8F2—P1—F591.3 (5)
C4—O1—N1—C1103.4 (5)O2—N2—C3—C2176.5 (3)
C4—O1—N1—C276.1 (5)C1—N3—C6—C7171.9 (5)
C5—O2—N2—C199.9 (4)C11—N3—C6—C71.1 (7)
C5—O2—N2—C378.3 (5)N3—C6—C7—C82.1 (8)
O1—N1—C1—N2178.0 (3)C6—C7—C8—C969.0 (7)
C2—N1—C1—N21.6 (5)C6—C7—C8—C1236.5 (7)
O1—N1—C1—N31.0 (7)C7—C8—C9—C1084.2 (6)
C2—N1—C1—N3179.4 (4)C12—C8—C9—C1026.1 (6)
O2—N2—C1—N1178.2 (3)C8—C9—C10—C110.1 (7)
C3—N2—C1—N10.2 (5)C9—C10—C11—N384.2 (5)
O2—N2—C1—N32.7 (6)C9—C10—C11—C1227.8 (5)
C3—N2—C1—N3178.9 (4)C1—N3—C11—C10119.4 (5)
C6—N3—C1—N136.2 (6)C6—N3—C11—C1069.8 (5)
C11—N3—C1—N1134.4 (4)C1—N3—C11—C12130.6 (4)
C6—N3—C1—N2144.9 (4)C6—N3—C11—C1240.2 (5)
C11—N3—C1—N244.4 (6)C10—C11—C12—C840.5 (5)
C1—N1—C2—C32.7 (5)N3—C11—C12—C872.9 (5)
O1—N1—C2—C3176.9 (3)C9—C8—C12—C1139.0 (5)
N1—C2—C3—N22.6 (4)C7—C8—C12—C1171.9 (5)
C1—N2—C3—C21.8 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···F5i0.952.363.242 (12)154
C2—H2···F5Ai0.952.363.23 (2)153
C3—H3···F60.952.423.365 (11)171
C4—H4A···F6Aii0.982.493.21 (2)131
C4—H4B···F2Aiii0.982.513.383 (17)148
C5—H5A···F5iv0.982.533.134 (11)120
C5—H5A···F5Aiv0.982.343.02 (2)125
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+1; (iii) x+2, y+1, z+1; (iv) x+3, y, z+1.
 

References

First citationBruker (2014). APEX2, SAINT and DIFABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFroschauer, C., Salchner, R., Laus, G., Weber, H. K., Tessadri, R., Griesser, U., Wurst, K., Kahlenberg, V. & Schottenberger, H. (2013). Aust. J. Chem. 66, 391–395.  Web of Science CrossRef CAS Google Scholar
First citationLaus, G., Kahlenberg, V. & Schottenberger, H. (2010). Z. Kristallogr. New Cryst. Struct. 225, 759–760.  CAS Google Scholar
First citationLaus, G., Kahlenberg, V. & Schottenberger, H. (2016). Crystals, 6, 20.  Web of Science CSD CrossRef Google Scholar
First citationLaus, G., Kostner, M. E., Kahlenberg, V. & Schottenberger, H. (2016). Z. Naturforsch. Teil B, 71, 997–1003.  CAS Google Scholar
First citationLaus, G., Schwärzler, A., Schuster, P., Bentivoglio, G., Hummel, M., Wurst, K., Kahlenberg, V., Lörting, T., Schütz, J., Peringer, P., Bonn, G., Nauer, G. & Schottenberger, H. (2007). Z. Naturforsch. Teil B, 62, 295–308.  CAS Google Scholar
First citationLaus, G., Wurst, K., Kahlenberg, V., Kopacka, H., Kreutz, C. & Schottenberger, H. (2010). Z. Naturforsch. Teil B, 65, 776–782.  CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPartl, G., Lampl, M., Laus, G., Wurst, K., Huppertz, H. & Schottenberger, H. (2016). IUCrData, 1, x160824.  Google Scholar
First citationRietzler, B., Laus, G., Kahlenberg, V. & Schottenberger, H. (2015). Acta Cryst. E71, m251–m252.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds