organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1,4-Bis[3,11-di­thiatri­cyclo­[11.3.1.15,9]octa­deca-1(17),5,7,9(18),13,15-hexaen-7-yl]buta-1,3-diyne

CROSSMARK_Color_square_no_text.svg

aDepartment of Applied Chemistry, Graduate School of Engineering, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata-ku, Kitakyushu 804-8550, Japan
*Correspondence e-mail: moriguch@che.kyutech.ac.jp

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 13 August 2016; accepted 29 August 2016; online 5 September 2016)

The complete mol­ecule of the title compound, C36H30S4 {common name: 1,4-[4-(9,17-di­thia­[3.3]meta­cyclo­phane)]-1,3-butadiyne}, is generated by a crystallographic inversion centre at the mid-point of the central C—C bond [1.367 (5) Å]. Both cyclo­phane units exist in cisoid pseudo-boat–chair chair–boat conformations. In the crystal, the packing is controlled by van der Waals inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The synthesis and mol­ecular structure analysis of bridged cyclo­phanes continue to attract inter­est in supra­molecular chemistry. The understanding of preferred conformations in cyclo­phanes is of importance in the design of various supra­molecular systems. Small-sized cyclo­phane mol­ecules act as a model to explore the mobility of such cyclo­phanes due to the presence of a variety of conformational processes including ring-flipping, ring-tilting and synanti isomerization. Small-sized cyclo­phane units have been used as a platform to build cofacial bis­porphyrins (Tsuge et al., 2012[Tsuge, A., Ikeda, Y., Moriguchi, T. & Araki, K. (2012). J. Porphyrins Phthalocyanines, 16, 250-254.]). The [3.3]di­thia­meta­cyclo­phane skeleton have also been used to provide an appropriate platform to arrange two oligomer chains side by side in stacked form because this kind of cyclo­phane assumes a syn structure (Tsuge et al., 2008[Tsuge, A., Hara, T., Moriguchi, T. & Yamaji, M. (2008). Chem. Lett. 37, 870-871.]). On the other hand, [3.3]di­thia­meta­cyclo­phanes consisting of oligo­thio­phene units with extended π-conjugation have shown better fluorescence properties (Tsuge et al., 2008[Tsuge, A., Hara, T., Moriguchi, T. & Yamaji, M. (2008). Chem. Lett. 37, 870-871.]). Thus, the elucidation of the crystal structures of cyclo­phane deriv­atives has attracted much attention.

Here, we report the crystal structure of the title compound, possessing extended ­π-conjugation via a 1,3-butadiyne unit (Fig. 1[link]). The complete mol­ecule is generated by a crystallographic inversion centre at the mid-point of the central C—C bond. The C—C single- and triple-bond lengths match the reported values in the literature (Mo et al., 1996[Mo, Y., Lin, Z., Wu, W. & Zhang, Q. (1996). J. Phys. Chem. 100, 11569-11572.]). Both cyclo­phane units exist in cisoid, pseudo boat-chair, chair-boat conformations with both substitutents positioned on the same side.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. Unlabelled atoms are generated by the symmetry operation (−x, −y + 2, −z + 1). H atoms have been omitted for clarity.

No directional inter­actions beyond normal van der Waals' contacts could be identified in the crystal. The crystal packing is shown in Fig. 2[link].

[Figure 2]
Figure 2
Crystal packing diagram of the title compound, viewed along the a axis, with H atoms omitted for clarity.

Synthesis and crystallization

The title compound was synthesized using Hay coupling as follows. The reaction scheme is shown in Fig. 3[link]. A di­chloro­methane solution (10 ml) of 6-ethynyl-2,11-di­thia­[3.3]meta­cyclo­phane (40.2 mg, 0.125 mmol) was added dropwise to a solution of tetra­methyl­ethylenedi­amine (TMEDA) (0.80 ml, 5.7 mmol) and CuCl (0.28 g, 2.9 mmol) as a catalyst in di­chloro­methane (50 ml). The reaction mixture was stirred for 2 h. After the completion of reaction, the resulting mixture was poured into 10% HCl (aq.) and then, the organic layer was washed with water. The resulting organic layer was dried over MgSO4 and the solvent was removed under reduced pressure. The resulting residue was purified by recrystallization and the title compound was obtained as white crystals (33.2 mg, 0.0562 mmol, 39% yield). Single crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of a di­chloro­methane–hexane solution at room temperature using the slow vapor diffusion technique.

[Figure 3]
Figure 3
The reaction scheme for the synthesis of the title compound.

1H NMR (400 MHz, CDCl3) 3.75 (s, 8 H, –CH2–), 3.78 (s, 8 H, –CH2–), 6.90 (d, 4 H, aryl C–H, J = 2.5 Hz), 6.97 (d, 4 H, aryl C–H, J = 2.5 Hz), 7.03 (m, 6 H, aryl C–H). EI–MS (75 eV): m/z 590 (M+). Elemental analysis: C 73.13% (73.18%, calculated), H 5.09% (5.12%, calculated).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula C36H30S4
Mr 590.84
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 90
a, b, c (Å) 8.717 (3), 16.325 (5), 21.043 (7)
V3) 2994.5 (17)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.34
Crystal size (mm) 0.35 × 0.25 × 0.20
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.659, 0.934
No. of measured, independent and observed [I > 2σ(I)] reflections 12443, 2641, 2172
Rint 0.041
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.130, 1.16
No. of reflections 2641
No. of parameters 181
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.37, −0.22
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2014/7 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS2014/7 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014/7 (Sheldrick, 2015).

1,4-Bis[3,11-dithiatricyclo[11.3.1.15,9]octadeca-1(17),5,7,9(18),13,15-hexaen-7-yl]buta-1,3-diyne top
Crystal data top
C36H30S4Dx = 1.311 Mg m3
Mr = 590.84Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 12443 reflections
a = 8.717 (3) Åθ = 1.9–25.0°
b = 16.325 (5) ŵ = 0.34 mm1
c = 21.043 (7) ÅT = 90 K
V = 2994.5 (17) Å3Prism, yellow
Z = 40.35 × 0.25 × 0.20 mm
F(000) = 1240
Data collection top
Bruker APEXII CCD
diffractometer
2641 independent reflections
Radiation source: fine focus sealed tube2172 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 8.333 pixels mm-1θmax = 25.0°, θmin = 1.9°
ω scansh = 106
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1919
Tmin = 0.659, Tmax = 0.934l = 2425
12443 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.130 w = 1/[σ2(Fo2) + (0.064P)2 + 2.2214P]
where P = (Fo2 + 2Fc2)/3
S = 1.16(Δ/σ)max = 0.001
2641 reflectionsΔρmax = 0.37 e Å3
181 parametersΔρmin = 0.22 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7566 (3)0.93934 (17)0.63894 (13)0.0272 (6)
H1A0.84310.96330.61670.033*
H1B0.79740.90480.67240.033*
C20.6688 (3)0.88566 (16)0.59271 (12)0.0232 (6)
C30.6204 (3)0.91543 (16)0.53423 (12)0.0253 (6)
H30.64810.9680.52160.03*
C40.5310 (3)0.86717 (17)0.49439 (13)0.0291 (7)
H40.49950.88750.45520.035*
C50.4883 (4)0.78859 (17)0.51288 (13)0.0315 (7)
H50.42520.75730.48680.038*
C60.5397 (4)0.75665 (16)0.57031 (12)0.0297 (7)
C70.6325 (3)0.80538 (16)0.60904 (13)0.0271 (6)
H70.67090.78360.64670.033*
C80.4951 (4)0.66958 (17)0.58834 (14)0.0413 (8)
H8B0.57690.63340.57460.05*
H8A0.40430.65510.56420.05*
C90.2692 (3)0.69461 (16)0.68376 (13)0.0285 (6)
H9A0.19630.67040.65440.034*
H9B0.23450.68270.72660.034*
C100.2712 (3)0.78628 (15)0.67415 (11)0.0205 (6)
C110.1831 (3)0.82242 (15)0.62706 (11)0.0194 (5)
H110.1130.7910.60440.023*
C120.1990 (3)0.90631 (15)0.61345 (11)0.0169 (5)
C130.3051 (3)0.95296 (15)0.64694 (11)0.0170 (5)
H130.31661.00830.63750.02*
C140.3943 (3)0.91761 (14)0.69438 (11)0.0155 (5)
C150.3743 (3)0.83492 (15)0.70824 (11)0.0189 (5)
H150.43090.81150.7410.023*
C160.5167 (3)0.96678 (16)0.72801 (12)0.0211 (6)
H16A0.57670.930.75430.025*
H16B0.46711.00590.7560.025*
C170.1119 (3)0.94410 (15)0.56359 (12)0.0190 (5)
C180.0414 (3)0.97970 (15)0.52266 (12)0.0188 (5)
S10.64610 (8)1.02199 (4)0.67558 (3)0.0240 (2)
S20.45632 (10)0.64782 (4)0.67156 (4)0.0328 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0255 (14)0.0334 (16)0.0228 (14)0.0002 (12)0.0054 (12)0.0026 (12)
C20.0259 (14)0.0251 (14)0.0185 (13)0.0024 (11)0.0088 (11)0.0026 (11)
C30.0330 (15)0.0248 (14)0.0181 (14)0.0005 (12)0.0082 (12)0.0037 (11)
C40.0437 (17)0.0301 (15)0.0135 (13)0.0048 (13)0.0064 (12)0.0001 (11)
C50.0440 (17)0.0298 (16)0.0207 (14)0.0020 (13)0.0086 (13)0.0119 (12)
C60.0493 (18)0.0196 (14)0.0204 (14)0.0041 (13)0.0115 (13)0.0041 (11)
C70.0377 (16)0.0246 (14)0.0191 (13)0.0087 (12)0.0079 (12)0.0033 (11)
C80.072 (2)0.0209 (15)0.0308 (17)0.0021 (15)0.0123 (17)0.0049 (13)
C90.0409 (16)0.0160 (14)0.0287 (15)0.0041 (12)0.0035 (13)0.0040 (11)
C100.0288 (14)0.0144 (12)0.0182 (13)0.0007 (11)0.0017 (11)0.0011 (10)
C110.0252 (13)0.0170 (12)0.0161 (12)0.0032 (11)0.0015 (10)0.0047 (10)
C120.0200 (12)0.0194 (12)0.0113 (12)0.0025 (10)0.0010 (10)0.0002 (10)
C130.0234 (13)0.0129 (12)0.0148 (12)0.0019 (10)0.0037 (11)0.0021 (9)
C140.0185 (12)0.0157 (12)0.0124 (12)0.0021 (10)0.0021 (10)0.0045 (9)
C150.0256 (13)0.0186 (13)0.0126 (12)0.0044 (10)0.0004 (10)0.0025 (10)
C160.0241 (13)0.0239 (14)0.0154 (13)0.0017 (11)0.0006 (11)0.0035 (10)
C170.0223 (13)0.0197 (13)0.0151 (13)0.0014 (11)0.0030 (11)0.0029 (10)
C180.0217 (13)0.0190 (13)0.0156 (12)0.0005 (10)0.0006 (10)0.0026 (10)
S10.0276 (4)0.0220 (4)0.0224 (4)0.0074 (3)0.0002 (3)0.0014 (3)
S20.0526 (5)0.0131 (4)0.0327 (4)0.0065 (3)0.0014 (4)0.0054 (3)
Geometric parameters (Å, º) top
C1—C21.517 (4)C9—S21.820 (3)
C1—S11.828 (3)C9—H9A0.97
C1—H1A0.97C9—H9B0.97
C1—H1B0.97C10—C111.386 (4)
C2—C31.389 (4)C10—C151.397 (4)
C2—C71.391 (4)C11—C121.406 (3)
C3—C41.390 (4)C11—H110.93
C3—H30.93C12—C131.390 (3)
C4—C51.391 (4)C12—C171.434 (3)
C4—H40.93C13—C141.390 (4)
C5—C61.390 (4)C13—H130.93
C5—H50.93C14—C151.392 (3)
C6—C71.397 (4)C14—C161.511 (3)
C6—C81.522 (4)C15—H150.93
C7—H70.93C16—S11.817 (3)
C8—S21.818 (3)C16—H16A0.97
C8—H8B0.97C16—H16B0.97
C8—H8A0.97C17—C181.207 (4)
C9—C101.510 (3)C18—C18i1.367 (5)
C2—C1—S1115.54 (19)S2—C9—H9A109.0
C2—C1—H1A108.4C10—C9—H9B109.0
S1—C1—H1A108.4S2—C9—H9B109.0
C2—C1—H1B108.4H9A—C9—H9B107.8
S1—C1—H1B108.4C11—C10—C15118.8 (2)
H1A—C1—H1B107.5C11—C10—C9120.7 (2)
C3—C2—C7118.7 (3)C15—C10—C9120.2 (2)
C3—C2—C1121.3 (2)C10—C11—C12120.4 (2)
C7—C2—C1120.0 (2)C10—C11—H11119.8
C2—C3—C4120.4 (3)C12—C11—H11119.8
C2—C3—H3119.8C13—C12—C11119.7 (2)
C4—C3—H3119.8C13—C12—C17119.2 (2)
C3—C4—C5120.3 (3)C11—C12—C17121.0 (2)
C3—C4—H4119.9C14—C13—C12120.6 (2)
C5—C4—H4119.9C14—C13—H13119.7
C6—C5—C4120.2 (3)C12—C13—H13119.7
C6—C5—H5119.9C13—C14—C15118.9 (2)
C4—C5—H5119.9C13—C14—C16120.7 (2)
C5—C6—C7118.7 (3)C15—C14—C16120.4 (2)
C5—C6—C8119.0 (3)C14—C15—C10121.6 (2)
C7—C6—C8122.3 (3)C14—C15—H15119.2
C2—C7—C6121.6 (3)C10—C15—H15119.2
C2—C7—H7119.2C14—C16—S1114.68 (17)
C6—C7—H7119.2C14—C16—H16A108.6
C6—C8—S2118.0 (2)S1—C16—H16A108.6
C6—C8—H8B107.8C14—C16—H16B108.6
S2—C8—H8B107.8S1—C16—H16B108.6
C6—C8—H8A107.8H16A—C16—H16B107.6
S2—C8—H8A107.8C18—C17—C12176.7 (3)
H8B—C8—H8A107.1C17—C18—C18i178.6 (3)
C10—C9—S2112.7 (2)C16—S1—C1102.53 (13)
C10—C9—H9A109.0C8—S2—C9102.74 (15)
S1—C1—C2—C369.6 (3)C9—C10—C11—C12172.5 (2)
S1—C1—C2—C7109.1 (3)C10—C11—C12—C130.7 (4)
C7—C2—C3—C43.2 (4)C10—C11—C12—C17178.1 (2)
C1—C2—C3—C4175.5 (2)C11—C12—C13—C140.8 (4)
C2—C3—C4—C50.3 (4)C17—C12—C13—C14178.3 (2)
C3—C4—C5—C62.4 (4)C12—C13—C14—C150.7 (3)
C4—C5—C6—C70.9 (4)C12—C13—C14—C16176.1 (2)
C4—C5—C6—C8178.2 (3)C13—C14—C15—C102.4 (4)
C3—C2—C7—C64.8 (4)C16—C14—C15—C10174.4 (2)
C1—C2—C7—C6174.0 (2)C11—C10—C15—C142.5 (4)
C5—C6—C7—C22.7 (4)C9—C10—C15—C14171.0 (2)
C8—C6—C7—C2178.2 (3)C13—C14—C16—S149.5 (3)
C5—C6—C8—S2143.7 (3)C15—C14—C16—S1127.3 (2)
C7—C6—C8—S237.2 (4)C14—C16—S1—C169.7 (2)
S2—C9—C10—C11118.5 (2)C2—C1—S1—C1669.8 (2)
S2—C9—C10—C1554.8 (3)C6—C8—S2—C974.4 (3)
C15—C10—C11—C120.9 (4)C10—C9—S2—C862.9 (2)
Symmetry code: (i) x, y+2, z+1.
 

Acknowledgements

We are grateful to the Center for Instrumental Analysis, Kyushu Institute of Technology (KITCIA), for the X-ray analysis.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMo, Y., Lin, Z., Wu, W. & Zhang, Q. (1996). J. Phys. Chem. 100, 11569–11572.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTsuge, A., Hara, T., Moriguchi, T. & Yamaji, M. (2008). Chem. Lett. 37, 870–871.  Web of Science CSD CrossRef CAS Google Scholar
First citationTsuge, A., Ikeda, Y., Moriguchi, T. & Araki, K. (2012). J. Porphyrins Phthalocyanines, 16, 250–254.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds