metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Di­chlorido[(1,2,3,3a,8b-η)-2,4-di­methyl­cyclo­penta­[b]indol­yl)(η5-penta­methyl­cyclo­penta­dien­yl)zirconium(IV)

aX-ray Structural Laboratory, A.N. Nesmeyanov Institute of Organoelement, Compounds, Vavilova St. 28, GSP-1, Moscow 119991, V-334, Russian Federation, and bDepartment of Chemistry, Lomonosov Moscow State University 1/3 Leninskie Gory, GSP-1, Moscow 119991, Russian Federation
*Correspondence e-mail: medvedev.m.g@gmail.com

Edited by K. Fejfarova, Institute of Biotechnology CAS, Czech Republic (Received 4 July 2016; accepted 3 September 2016; online 9 September 2016)

In the structure of the title compound, [Zn(C13H12N)(C10H15)Cl2], the dihedral angle between the planes of rings coordinating to Zr is 51.6 (2)°. The Cl—Zr—Cl angle is 97.52 (4)°. The crystal structure is stabilized by H⋯Cl and C—H⋯π inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

A view of the title mol­ecule is given on Fig. 1[link]. The chlorine ligands form intra­molecular C—H⋯Cl hydrogen bonds (Table 1[link]). The crystal structure is stabilized by C—H⋯π inter­actions.

Table 1
Hydrogen-bond geometry (Å, °)

Cg4 is the centroid of the C6–C11 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯Cl1i 1.0 2.72 3.684 (5) 162
C10—H10⋯Cl2ii 0.95 2.77 3.699 (5) 166
C22—H22C⋯Cl1 0.98 2.67 3.158 (5) 111
C22—H22ACg4iii 0.98 2.57 3.487 (5) 156
Symmetry codes: (i) -x+1, -y+1, z; (ii) y, -x+1, -z+1; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 1]
Figure 1
The structure of the title compound with displacement ellipsoids at the 50% probability level.

Synthesis and crystallization

The title complex was obtained via treatment of (C5Me5)ZrCl3 (Ryabov et al., 2002[Ryabov, A. N., Izmer, V. V., Borisenko, A. A., Canich, J. A. M., Kuz'mina, L. G., Howard, J. A. K. & Voskoboynikov, A. Z. (2002). J. Chem. Soc. Dalton Trans. pp. 2995-3000.]) with the lithium salt of 2,4-dimethyl-1,4-di­hydro­cyclo­penta­[b]indole (van Baar et al., 2003[Baar, J. F. van, Horton, A. D., de Kloe, K. P., Kragtwijk, E., Mkoyan, S. G., Nifant'ev, I. E., Schut, P. A. & Taidakov, I. V. (2003). Organometallics, 22, 2711-2722.]) in THF followed by crystallization of the crude product from toluene. Single crystals suitable for X-ray crystal structure analysis were grown from a toluene–hexa­nes solution at −30°C.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Zn(C13H12N)(C10H15)Cl2]
Mr 479.57
Crystal system, space group Tetragonal, P[\overline{4}]21c
Temperature (K) 100
a, c (Å) 15.9363 (8), 16.8801 (8)
V3) 4287.0 (5)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.77
Crystal size (mm) 0.25 × 0.2 × 0.2
 
Data collection
Diffractometer Bruker SMART CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.759, 0.925
No. of measured, independent and observed [I > 2σ(I)] reflections 86055, 5707, 5264
Rint 0.051
(sin θ/λ)max−1) 0.682
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.096, 1.11
No. of reflections 5707
No. of parameters 251
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.25, −0.38
Absolute structure Flack x determined using 2285 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.056 (13)
Computer programs: SMART and SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Dichlorido[(1,2,3,3a,8b-η)-2,4-dimethylcyclopenta[b]indolyl)(η5-pentamethylcyclopentadienyl]zirconium(IV) top
Crystal data top
[Zn(C13H12N)(C10H15)Cl2]Dx = 1.486 Mg m3
Mr = 479.57Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P421cCell parameters from 1024 reflections
a = 15.9363 (8) Åθ = 2.8–28.9°
c = 16.8801 (8) ŵ = 0.77 mm1
V = 4287.0 (5) Å3T = 100 K
Z = 8Prism, yellow
F(000) = 19680.25 × 0.2 × 0.2 mm
Data collection top
Bruker SMART CCD area detector
diffractometer
5264 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
phi and ω scansθmax = 29.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 2121
Tmin = 0.759, Tmax = 0.925k = 2121
86055 measured reflectionsl = 2323
5707 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(Fo2) + (0.040P)2 + 7.P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.096(Δ/σ)max < 0.001
S = 1.11Δρmax = 1.25 e Å3
5707 reflectionsΔρmin = 0.38 e Å3
251 parametersAbsolute structure: Flack x determined using 2285 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.056 (13)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zr10.65206 (2)0.33633 (2)0.77455 (2)0.02065 (10)
Cl10.64847 (7)0.47013 (7)0.84549 (7)0.0319 (2)
Cl20.65603 (7)0.39342 (7)0.64001 (7)0.0297 (2)
N10.4764 (2)0.3176 (2)0.6413 (3)0.0273 (8)
C10.4985 (3)0.3110 (3)0.7191 (3)0.0279 (9)
C20.4924 (3)0.3562 (3)0.7901 (3)0.0338 (11)
H20.46270.41100.79730.041*
C30.5219 (3)0.3034 (4)0.8516 (3)0.0362 (12)
C40.5521 (3)0.2274 (3)0.8176 (3)0.0279 (10)
H40.56670.17520.84740.033*
C50.5391 (3)0.2331 (3)0.7334 (3)0.0238 (9)
C60.5416 (3)0.1902 (3)0.6576 (3)0.0242 (9)
C70.5689 (3)0.1122 (3)0.6303 (3)0.0263 (9)
H70.59310.07300.66600.032*
C80.5604 (3)0.0922 (3)0.5505 (3)0.0291 (10)
H80.57980.03940.53180.035*
C90.5237 (3)0.1489 (4)0.4974 (3)0.0310 (10)
H90.51830.13390.44320.037*
C100.4951 (3)0.2267 (3)0.5229 (3)0.0298 (10)
H100.47100.26550.48670.036*
C110.5027 (3)0.2461 (3)0.6024 (3)0.0258 (9)
C120.5167 (4)0.3213 (4)0.9390 (3)0.0475 (15)
H12A0.45820.31690.95650.071*
H12B0.53750.37810.94950.071*
H12C0.55100.28060.96800.071*
C130.4404 (3)0.3916 (3)0.6035 (4)0.0394 (13)
H13A0.42550.43300.64410.059*
H13B0.39010.37550.57390.059*
H13C0.48160.41610.56710.059*
C140.7468 (3)0.2111 (3)0.7950 (3)0.0245 (9)
C150.7796 (3)0.2544 (3)0.7291 (3)0.0240 (8)
C160.8101 (3)0.3336 (3)0.7566 (3)0.0265 (9)
C170.7955 (3)0.3379 (3)0.8390 (3)0.0227 (8)
C180.7547 (3)0.2631 (3)0.8630 (3)0.0247 (9)
C190.7246 (3)0.1194 (3)0.7945 (3)0.0313 (10)
H19B0.77360.08660.77800.047*
H19C0.67840.10980.75720.047*
H19A0.70730.10210.84770.047*
C200.7866 (3)0.2202 (3)0.6466 (3)0.0292 (10)
H20A0.82770.17450.64580.044*
H20B0.80480.26480.61060.044*
H20C0.73180.19880.62950.044*
C210.8562 (3)0.3978 (3)0.7079 (3)0.0327 (11)
H21B0.91660.39320.71790.049*
H21C0.83690.45410.72240.049*
H21A0.84510.38790.65160.049*
C220.8289 (3)0.4052 (3)0.8927 (3)0.0335 (11)
H22A0.89020.40100.89550.050*
H22B0.80520.39810.94590.050*
H22C0.81320.46040.87190.050*
C230.7349 (4)0.2407 (3)0.9467 (3)0.0341 (11)
H23A0.78700.22830.97520.051*
H23B0.69830.19130.94760.051*
H23C0.70630.28790.97230.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zr10.02017 (18)0.01997 (18)0.02183 (17)0.00016 (14)0.00149 (16)0.00073 (16)
Cl10.0272 (5)0.0237 (5)0.0448 (6)0.0029 (4)0.0035 (5)0.0081 (4)
Cl20.0245 (5)0.0343 (5)0.0303 (5)0.0008 (5)0.0015 (5)0.0120 (4)
N10.0210 (17)0.0251 (18)0.036 (2)0.0016 (14)0.0022 (16)0.0037 (16)
C10.0195 (19)0.026 (2)0.038 (3)0.0002 (15)0.001 (2)0.003 (2)
C20.0191 (19)0.036 (3)0.046 (3)0.0020 (18)0.0064 (18)0.009 (2)
C30.025 (2)0.055 (3)0.028 (2)0.009 (2)0.012 (2)0.012 (2)
C40.029 (2)0.029 (2)0.026 (2)0.0101 (19)0.0053 (18)0.0029 (19)
C50.025 (2)0.0193 (18)0.027 (2)0.0078 (16)0.0036 (18)0.0006 (17)
C60.020 (2)0.025 (2)0.027 (2)0.0019 (16)0.0019 (17)0.0013 (17)
C70.028 (2)0.023 (2)0.028 (2)0.0005 (18)0.0034 (18)0.0005 (18)
C80.026 (2)0.033 (2)0.029 (2)0.0013 (18)0.0008 (18)0.0036 (19)
C90.026 (2)0.042 (3)0.025 (2)0.008 (2)0.0008 (17)0.000 (2)
C100.026 (2)0.032 (2)0.032 (2)0.0043 (18)0.0061 (19)0.009 (2)
C110.022 (2)0.025 (2)0.031 (2)0.0026 (17)0.0013 (18)0.0053 (18)
C120.039 (3)0.065 (4)0.038 (3)0.014 (3)0.013 (2)0.014 (3)
C130.029 (3)0.029 (3)0.060 (4)0.004 (2)0.011 (3)0.005 (2)
C140.025 (2)0.022 (2)0.027 (2)0.0073 (17)0.0012 (17)0.0012 (17)
C150.0222 (19)0.030 (2)0.020 (2)0.0079 (16)0.0002 (18)0.0013 (19)
C160.0164 (17)0.029 (2)0.034 (2)0.0052 (17)0.0001 (16)0.0033 (19)
C170.0199 (18)0.021 (2)0.028 (2)0.0010 (16)0.0052 (15)0.0031 (17)
C180.027 (2)0.025 (2)0.023 (2)0.0048 (17)0.0022 (17)0.0015 (17)
C190.038 (3)0.023 (2)0.033 (3)0.0018 (19)0.004 (2)0.0025 (18)
C200.032 (2)0.037 (3)0.018 (2)0.010 (2)0.0025 (18)0.0015 (19)
C210.026 (2)0.028 (2)0.045 (3)0.0010 (18)0.004 (2)0.0073 (19)
C220.029 (2)0.028 (2)0.043 (3)0.0016 (19)0.009 (2)0.009 (2)
C230.049 (3)0.031 (2)0.023 (2)0.007 (2)0.002 (2)0.0031 (19)
Geometric parameters (Å, º) top
Zr1—Cl12.4463 (12)C3—C121.505 (7)
Zr1—Cl22.4473 (12)C4—C51.439 (6)
Zr1—C12.651 (4)C5—C61.451 (7)
Zr1—C22.578 (5)C6—C71.394 (6)
Zr1—C32.504 (5)C6—C111.430 (6)
Zr1—C42.466 (5)C7—C81.391 (7)
Zr1—C52.535 (4)C8—C91.401 (7)
Zr1—C142.525 (4)C9—C101.389 (8)
Zr1—C152.534 (4)C10—C111.383 (7)
Zr1—C162.538 (4)C14—C151.409 (7)
Zr1—C172.532 (4)C14—C181.421 (7)
Zr1—C182.504 (4)C14—C191.504 (6)
N1—C11.364 (7)C15—C161.429 (7)
N1—C111.381 (6)C15—C201.501 (6)
N1—C131.459 (6)C16—C171.413 (6)
C1—C21.402 (7)C16—C211.504 (6)
C1—C51.420 (6)C17—C181.418 (6)
C2—C31.418 (8)C17—C221.501 (6)
C3—C41.424 (7)C18—C231.491 (7)
Cl1—Zr1—Cl297.52 (4)C1—N1—C13125.8 (4)
Cl1—Zr1—C1106.50 (11)C11—N1—C13125.4 (4)
Cl1—Zr1—C279.62 (12)N1—C1—Zr1124.5 (3)
Cl1—Zr1—C384.79 (13)N1—C1—C2139.9 (5)
Cl1—Zr1—C4117.03 (12)N1—C1—C5110.4 (4)
Cl1—Zr1—C5133.10 (11)C2—C1—Zr171.6 (3)
Cl1—Zr1—C14129.47 (11)C2—C1—C5109.7 (5)
Cl1—Zr1—C15128.01 (11)C5—C1—Zr169.7 (2)
Cl1—Zr1—C1695.56 (11)C1—C2—Zr177.3 (3)
Cl1—Zr1—C1778.57 (10)C1—C2—C3107.3 (4)
Cl1—Zr1—C1897.46 (11)C3—C2—Zr170.9 (3)
Cl2—Zr1—C175.69 (12)C2—C3—Zr176.7 (3)
Cl2—Zr1—C294.25 (13)C2—C3—C4108.8 (4)
Cl2—Zr1—C3125.56 (14)C2—C3—C12125.9 (5)
Cl2—Zr1—C4123.48 (12)C4—C3—Zr171.9 (3)
Cl2—Zr1—C590.29 (12)C4—C3—C12125.2 (6)
Cl2—Zr1—C14113.90 (11)C12—C3—Zr1121.0 (4)
Cl2—Zr1—C1583.69 (11)C3—C4—Zr174.8 (3)
Cl2—Zr1—C1682.53 (11)C3—C4—C5107.2 (4)
Cl2—Zr1—C17111.83 (11)C5—C4—Zr175.9 (3)
Cl2—Zr1—C18135.23 (11)C1—C5—Zr178.7 (3)
C2—Zr1—C131.06 (15)C1—C5—C4106.7 (4)
C3—Zr1—C152.18 (17)C1—C5—C6106.0 (4)
C3—Zr1—C232.36 (18)C4—C5—Zr170.7 (3)
C3—Zr1—C554.44 (16)C4—C5—C6146.8 (5)
C3—Zr1—C14104.96 (18)C6—C5—Zr1121.9 (3)
C3—Zr1—C15135.51 (18)C7—C6—C5136.0 (4)
C3—Zr1—C16151.72 (17)C7—C6—C11118.4 (4)
C3—Zr1—C17121.77 (16)C11—C6—C5105.6 (4)
C3—Zr1—C1897.67 (18)C8—C7—C6119.6 (5)
C4—Zr1—C153.15 (16)C7—C8—C9120.8 (5)
C4—Zr1—C254.47 (17)C10—C9—C8121.0 (5)
C4—Zr1—C333.29 (17)C11—C10—C9118.1 (5)
C4—Zr1—C533.41 (14)N1—C11—C6109.6 (4)
C4—Zr1—C1477.85 (16)N1—C11—C10128.3 (4)
C4—Zr1—C15104.16 (16)C10—C11—C6122.1 (5)
C4—Zr1—C16131.63 (16)C15—C14—Zr174.2 (2)
C4—Zr1—C17117.64 (16)C15—C14—C18108.6 (4)
C4—Zr1—C1885.31 (16)C15—C14—C19123.9 (4)
C5—Zr1—C131.69 (14)C18—C14—Zr172.8 (2)
C5—Zr1—C253.63 (15)C18—C14—C19126.3 (4)
C5—Zr1—C16131.34 (15)C19—C14—Zr1128.8 (3)
C14—Zr1—C1118.66 (15)C14—C15—Zr173.5 (3)
C14—Zr1—C2132.32 (17)C14—C15—C16107.6 (4)
C14—Zr1—C587.08 (15)C14—C15—C20125.6 (4)
C14—Zr1—C1532.35 (15)C16—C15—Zr173.8 (2)
C14—Zr1—C1653.80 (15)C16—C15—C20126.6 (4)
C14—Zr1—C1753.82 (15)C20—C15—Zr1121.9 (3)
C15—Zr1—C1123.72 (15)C15—C16—Zr173.5 (2)
C15—Zr1—C2152.35 (16)C15—C16—C21126.1 (4)
C15—Zr1—C598.75 (14)C17—C16—Zr173.6 (2)
C15—Zr1—C1632.73 (15)C17—C16—C15107.9 (4)
C16—Zr1—C1150.64 (16)C17—C16—C21125.8 (4)
C16—Zr1—C2173.85 (16)C21—C16—Zr1122.5 (3)
C17—Zr1—C1170.66 (15)C16—C17—Zr174.0 (2)
C17—Zr1—C2147.81 (15)C16—C17—C18108.4 (4)
C17—Zr1—C5139.93 (14)C16—C17—C22124.9 (4)
C17—Zr1—C1553.93 (14)C18—C17—Zr172.6 (2)
C17—Zr1—C1632.36 (14)C18—C17—C22126.2 (4)
C18—Zr1—C1137.96 (15)C22—C17—Zr1125.9 (3)
C18—Zr1—C2129.92 (17)C14—C18—Zr174.4 (3)
C18—Zr1—C5108.95 (15)C14—C18—C23127.4 (4)
C18—Zr1—C1432.82 (15)C17—C18—Zr174.7 (2)
C18—Zr1—C1554.29 (15)C17—C18—C14107.5 (4)
C18—Zr1—C1654.17 (15)C17—C18—C23124.7 (4)
C18—Zr1—C1732.70 (15)C23—C18—Zr1122.5 (3)
C1—N1—C11108.4 (4)
Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C6–C11 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2···Cl1i1.02.723.684 (5)162
C10—H10···Cl2ii0.952.773.699 (5)166
C22—H22C···Cl10.982.673.158 (5)111
C22—H22A···Cg4iii0.982.573.487 (5)156
Symmetry codes: (i) x+1, y+1, z; (ii) y, x+1, z+1; (iii) x+1/2, y+1/2, z+3/2.
 

Acknowledgements

This work was supported by the Ministry of Education and Science of the Russian Federation, grant agreement No. 14.613.21.0041 on 11.11.2015 (unique project identifier RFMEFI61315X0041).

References

First citationBaar, J. F. van, Horton, A. D., de Kloe, K. P., Kragtwijk, E., Mkoyan, S. G., Nifant'ev, I. E., Schut, P. A. & Taidakov, I. V. (2003). Organometallics, 22, 2711–2722.  Google Scholar
First citationBruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRyabov, A. N., Izmer, V. V., Borisenko, A. A., Canich, J. A. M., Kuz'mina, L. G., Howard, J. A. K. & Voskoboynikov, A. Z. (2002). J. Chem. Soc. Dalton Trans. pp. 2995–3000.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds