organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(E)-4-Meth­­oxy-N′-(2,3,4-tri­meth­­oxy­benzyl­­idene)benzohydrazide monohydrate

CROSSMARK_Color_square_no_text.svg

aPG and Research Department of Chemistry, Periyar E.V. R. College (Autonomous), Trichy 620 023., India, bDepartment of Physics and Nanotechnology, SRM University, Kattankulathur, Tamil Nadu, India, and cDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India
*Correspondence e-mail: beni2@rediffmail.com, chakkaravarthi_2005@yahoo.com,

Edited by M. Bolte, Goethe-Universität Frankfurt Germany (Received 20 September 2016; accepted 28 September 2016; online 30 September 2016)

The asymmetric unit of the title compound, C18H20N2O5·H2O, consists of a benzohydrazide mol­ecule which exists in an E conformation with respect to the C=N imine bond and a water mol­ecule. The dihedral angle between the aromatic rings is 41.67 (9)°. The meth­oxy substituent of the 4-meth­oxy­phenyl group is twisted at an angle of 6.8 (3)° out of the plane of the attached benzene ring. In the 2,4,5-tri­meth­oxy­phenyl unit, the para-meth­oxy group is coplanar with the ring [C—C—O—C = −1.5 (3)°], whereas the ortho- and meta-meth­oxy groups are twisted out of the plane of the ring [C—C—O—C = 75.4 (2) and −67.1 (2)°, respectively]. Two mol­ecules are connected by two water mol­ecules via O—H⋯O hydrogen bonds, generating an R22(8) ring motif. One of the water H atoms forms an additional hydrogen bond to an N atom. The water mol­ecules act as an acceptor for an N—H⋯O hydrogen bond. As a result, a three-dimensional network is formed.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Benzohydrazide derivatives possess biological activities such as anti­fungal (Loncle et al., 2004[Loncle, C., Brunel, J. M., Vidal, N., Dherbomez, M. & Letourneux, Y. (2004). Eur. J. Med. Chem. 39, 1067-1071.]), anti­malarial (Melnyk et al., 2006[Melnyk, P., Leroux, V., Sergheraert, C. & Grellier, P. (2006). Bioorg. Med. Chem. Lett. 16, 31-35.]) and anti­proliferative (Raj et al., 2007[Raj, K. K. V., Narayana, B., Ashalatha, B. V., Kumari, N. S. & Sarojini, B. K. (2007). Eur. J. Med. Chem. 42, 425-429.]). We report the synthesis and the crystal structure of the title compound (Fig. 1[link]) whose geometric parameters are comparable with those of related structures (Fun et al., 2012[Fun, H.-K., Promdet, P., Horkaew, J. & Chantrapromma, S. (2012). Acta Cryst. E68, o562-o563.]; Horkaew et al., 2011[Horkaew, J., Chantrapromma, S. & Fun, H.-K. (2011). Acta Cryst. E67, o2985.]). The dihedral angle between the planes of the C2–C7 and C10–C15 aromatic rings is 41.67 (9)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling and 30% probability displacement ellipsoids.

The benzohydrazide mol­ecule exists in an E conformation with respect to the C9=N2 imine bond [1.277 (2) Å] and the N1—N2—C9—C10 torsion angle is 179.79 (14)°. The meth­oxy substituent of 4-meth­oxy­phenyl is twisted at an C7—C2—O1—C1 angle of 6.8 (3)°, with the attached benzene ring. The three meth­oxy groups of 2,4,5-tri­meth­oxy­phenyl unit have two different orientations: the para-meth­oxy group (at atom C13) is coplanar [C18—O5—C13—C12 = 178.49 (19)°] with the ring, whereas the ortho- and meta-meth­oxy groups (attached at atoms C11 and C12) are twisted out of the ring plane [C16—O3—C11—C10 = −108.9 (2)° and C17—O4—C12—C11 = 114.9 (2)°].

In the crystal (Fig. 2[link]), the benzohydrazide and water mol­ecules are linked by N—H⋯O hydrogen bonds and a C—H⋯O contact (Table 1[link]). A pair of O—H⋯O (O6—H6A⋯O2i and O6—H6B⋯O2ii) hydrogen bonds generate an R22(8) ring motif and O—H⋯O (O6—H6B⋯O2ii) and O—H⋯N (O6—H6B⋯N2ii) hydrogen bonds generate a bifurcated R12(6) ring motif (Fig. 3[link] and Table 1[link]). As a result, a three-dimensional network is formed (Fig. 2[link]), which is additionally stabilized by C—H⋯π inter­actions.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C2–C7 and C10–C15 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O6 0.86 (1) 2.07 (1) 2.905 (2) 164 (2)
C9—H9⋯O6 0.93 2.45 3.258 (2) 146
O6—H6A⋯O2i 0.87 (1) 1.98 (1) 2.8204 (18) 163 (2)
O6—H6B⋯O2ii 0.86 (1) 2.11 (1) 2.914 (2) 156 (2)
O6—H6B⋯N2ii 0.86 (1) 2.54 (2) 3.1880 (19) 133 (2)
C1—H1CCg2iii 0.96 2.95 3.900 (3) 171
C16—H16CCg1i 0.96 2.79 3.713 (2) 162
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
The crystal packing of the title compound, viewed down the a axis. Hydrogen bonds are shown as dashed lines. H atoms not involving in hydrogen bonding have been omitted for clarity.
[Figure 3]
Figure 3
A partial view of the crystal packing, showing the various ring motifs.

Synthesis and crystallization

4-Meth­oxy­benzohydrazide (0.001 mmol, 0.17 g) was dissolved in ethanol (10 ml). 2,3,4-tri­meth­oxy­benzaldehyde (0.001 mmol, 0.145 g) was added slowly followed by addition of concentrated HCl (0.2 mmol). The mixture was stirred continuously for 30 min at room temperature. The precipitate formed was filtered, then washed with petroleum ether (40–60%) and dried in a vacuum desiccator, and the crystals suitable for X-ray diffraction were harvested.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The reflection 100 was omitted during refinement due to being obscured by the beam stop.

Table 2
Experimental details

Crystal data
Chemical formula C18H20N2O5·H2O
Mr 362.37
Crystal system, space group Monoclinic, P21/c
Temperature (K) 295
a, b, c (Å) 16.1090 (9), 11.2205 (5), 10.7515 (5)
β (°) 104.888 (2)
V3) 1878.11 (16)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.30 × 0.28 × 0.24
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.962, 0.986
No. of measured, independent and observed [I > 2σ(I)] reflections 14944, 4685, 2334
Rint 0.037
(sin θ/λ)max−1) 0.669
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.145, 0.99
No. of reflections 4685
No. of parameters 249
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.18, −0.21
Computer programs: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2016 (Sheldrick, 2015) and PLATON (Spek, 2009).

(E)-4-Methoxy-N'-(2,3,4-trimethoxybenzylidene)benzohydrazide monohydrate top
Crystal data top
C18H20N2O5·H2OF(000) = 768
Mr = 362.37Dx = 1.282 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 16.1090 (9) ÅCell parameters from 2417 reflections
b = 11.2205 (5) Åθ = 2.1–28.3°
c = 10.7515 (5) ŵ = 0.10 mm1
β = 104.888 (2)°T = 295 K
V = 1878.11 (16) Å3Block, colourless
Z = 40.30 × 0.28 × 0.24 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2334 reflections with I > 2σ(I)
ω and φ scanRint = 0.037
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
θmax = 28.4°, θmin = 2.6°
Tmin = 0.962, Tmax = 0.986h = 2119
14944 measured reflectionsk = 1514
4685 independent reflectionsl = 1114
Refinement top
Refinement on F23 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.049H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.145 w = 1/[σ2(Fo2) + (0.0658P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max < 0.001
4685 reflectionsΔρmax = 0.18 e Å3
249 parametersΔρmin = 0.21 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.24421 (17)0.0490 (2)0.1222 (3)0.0886 (8)
H1A1.2803610.0690280.1774900.133*
H1B1.1936120.0091060.1712450.133*
H1C1.2748690.0027020.0547300.133*
C21.16371 (12)0.14659 (18)0.00676 (19)0.0545 (5)
C31.13670 (13)0.25364 (18)0.0479 (2)0.0647 (6)
H31.1580280.3251700.0251870.078*
C41.07928 (13)0.25478 (17)0.1212 (2)0.0581 (5)
H41.0610020.3272460.1467450.070*
C51.04751 (11)0.14890 (16)0.15839 (16)0.0447 (4)
C61.07691 (12)0.04319 (16)0.11999 (17)0.0471 (5)
H61.0576050.0283260.1461810.056*
C71.13406 (12)0.04018 (17)0.04393 (18)0.0504 (5)
H71.1523230.0321920.0181200.060*
C80.98183 (12)0.14453 (16)0.23180 (17)0.0474 (5)
C90.79901 (11)0.31185 (16)0.22430 (16)0.0442 (4)
H90.8036030.3615900.1571940.053*
C100.72665 (11)0.32514 (15)0.27982 (15)0.0403 (4)
C110.66504 (12)0.41359 (15)0.23211 (16)0.0437 (4)
C120.59547 (12)0.42884 (16)0.28314 (17)0.0497 (5)
C130.58618 (12)0.35767 (16)0.38446 (17)0.0506 (5)
C140.64630 (12)0.26918 (16)0.43072 (17)0.0512 (5)
H140.6402080.2201520.4975560.061*
C150.71445 (12)0.25373 (16)0.37852 (16)0.0469 (5)
H150.7537880.1934220.4102680.056*
C160.69663 (16)0.6007 (2)0.1529 (2)0.0836 (8)
H16A0.6578510.6392640.1945220.125*
H16B0.6948920.6405620.0732010.125*
H16C0.7539160.6040940.2077600.125*
C170.45299 (16)0.4792 (2)0.1714 (3)0.1005 (10)
H17A0.4479060.4730420.0807140.151*
H17B0.4119000.5358570.1862050.151*
H17C0.4422360.4027740.2042900.151*
C180.50355 (17)0.3094 (2)0.5323 (2)0.0897 (8)
H18A0.4948950.2281350.5038430.135*
H18B0.4536810.3372320.5567950.135*
H18C0.5527530.3141000.6048110.135*
N20.85666 (10)0.23302 (13)0.26582 (14)0.0473 (4)
N10.92169 (10)0.23108 (14)0.20414 (15)0.0483 (4)
O11.22019 (10)0.15475 (13)0.06744 (16)0.0771 (5)
O20.97921 (8)0.06501 (12)0.31030 (13)0.0609 (4)
O30.67178 (9)0.47970 (11)0.12780 (12)0.0582 (4)
O40.53704 (9)0.51746 (12)0.23501 (15)0.0699 (4)
O50.51735 (10)0.38125 (13)0.43079 (14)0.0729 (4)
O60.89533 (9)0.42585 (12)0.02007 (13)0.0578 (4)
H10.9222 (11)0.2829 (13)0.1455 (13)0.051 (5)*
H6A0.9271 (12)0.4808 (15)0.0652 (18)0.076*
H6B0.9070 (14)0.417 (2)0.0528 (13)0.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0936 (19)0.0836 (18)0.1047 (19)0.0148 (14)0.0550 (16)0.0022 (15)
C20.0486 (11)0.0563 (13)0.0610 (12)0.0044 (9)0.0182 (10)0.0093 (10)
C30.0633 (14)0.0437 (11)0.0948 (16)0.0003 (10)0.0341 (12)0.0114 (11)
C40.0572 (12)0.0415 (11)0.0798 (14)0.0042 (9)0.0252 (11)0.0023 (10)
C50.0427 (10)0.0435 (10)0.0459 (10)0.0040 (8)0.0076 (8)0.0055 (8)
C60.0474 (11)0.0412 (10)0.0490 (10)0.0014 (8)0.0058 (9)0.0077 (8)
C70.0517 (12)0.0439 (11)0.0533 (11)0.0069 (9)0.0092 (9)0.0020 (9)
C80.0500 (11)0.0440 (10)0.0453 (10)0.0018 (9)0.0069 (9)0.0025 (9)
C90.0482 (11)0.0444 (10)0.0370 (9)0.0022 (8)0.0056 (8)0.0016 (8)
C100.0429 (10)0.0391 (9)0.0359 (9)0.0022 (8)0.0047 (7)0.0006 (8)
C110.0525 (11)0.0402 (10)0.0356 (9)0.0003 (8)0.0066 (8)0.0016 (8)
C120.0597 (13)0.0402 (10)0.0477 (10)0.0121 (9)0.0112 (9)0.0041 (9)
C130.0547 (12)0.0516 (11)0.0477 (11)0.0070 (9)0.0169 (9)0.0020 (9)
C140.0599 (12)0.0486 (11)0.0447 (10)0.0027 (9)0.0129 (9)0.0086 (9)
C150.0489 (11)0.0436 (10)0.0452 (10)0.0045 (8)0.0069 (8)0.0059 (9)
C160.0892 (18)0.0592 (14)0.0907 (17)0.0149 (12)0.0019 (14)0.0268 (13)
C170.0813 (19)0.099 (2)0.103 (2)0.0370 (15)0.0102 (16)0.0022 (16)
C180.1019 (19)0.0920 (18)0.0959 (18)0.0139 (16)0.0632 (16)0.0193 (15)
N20.0458 (9)0.0488 (9)0.0476 (8)0.0028 (7)0.0125 (7)0.0042 (7)
N10.0503 (10)0.0473 (9)0.0489 (9)0.0064 (7)0.0155 (7)0.0119 (8)
O10.0806 (11)0.0649 (10)0.1004 (12)0.0059 (8)0.0497 (9)0.0103 (9)
O20.0664 (9)0.0581 (8)0.0600 (8)0.0134 (7)0.0195 (7)0.0202 (7)
O30.0713 (9)0.0526 (8)0.0499 (8)0.0039 (7)0.0141 (6)0.0169 (6)
O40.0737 (11)0.0588 (9)0.0795 (10)0.0268 (8)0.0236 (8)0.0181 (7)
O50.0831 (11)0.0767 (10)0.0708 (9)0.0247 (8)0.0414 (8)0.0134 (8)
O60.0684 (10)0.0563 (9)0.0507 (8)0.0118 (7)0.0189 (7)0.0035 (7)
Geometric parameters (Å, º) top
C1—O11.422 (3)C11—C121.379 (3)
C1—H1A0.9600C12—O41.376 (2)
C1—H1B0.9600C12—C131.389 (3)
C1—H1C0.9600C13—O51.353 (2)
C2—O11.359 (2)C13—C141.387 (2)
C2—C71.383 (3)C14—C151.366 (2)
C2—C31.388 (3)C14—H140.9300
C3—C41.361 (3)C15—H150.9300
C3—H30.9300C16—O31.422 (2)
C4—C51.392 (3)C16—H16A0.9600
C4—H40.9300C16—H16B0.9600
C5—C61.379 (2)C16—H16C0.9600
C5—C81.474 (3)C17—O41.418 (3)
C6—C71.380 (3)C17—H17A0.9600
C6—H60.9300C17—H17B0.9600
C7—H70.9300C17—H17C0.9600
C8—O21.236 (2)C18—O51.420 (3)
C8—N11.350 (2)C18—H18A0.9600
C9—N21.277 (2)C18—H18B0.9600
C9—C101.447 (2)C18—H18C0.9600
C9—H90.9300N2—N11.376 (2)
C10—C151.383 (2)N1—H10.859 (9)
C10—C111.404 (2)O6—H6A0.865 (9)
C11—O31.372 (2)O6—H6B0.858 (9)
O1—C1—H1A109.5C11—C12—C13120.19 (16)
O1—C1—H1B109.5O5—C13—C14124.80 (18)
H1A—C1—H1B109.5O5—C13—C12116.09 (16)
O1—C1—H1C109.5C14—C13—C12119.11 (19)
H1A—C1—H1C109.5C15—C14—C13120.29 (17)
H1B—C1—H1C109.5C15—C14—H14119.9
O1—C2—C7124.14 (18)C13—C14—H14119.9
O1—C2—C3116.16 (18)C14—C15—C10121.95 (16)
C7—C2—C3119.7 (2)C14—C15—H15119.0
C4—C3—C2120.54 (19)C10—C15—H15119.0
C4—C3—H3119.7O3—C16—H16A109.5
C2—C3—H3119.7O3—C16—H16B109.5
C3—C4—C5120.87 (18)H16A—C16—H16B109.5
C3—C4—H4119.6O3—C16—H16C109.5
C5—C4—H4119.6H16A—C16—H16C109.5
C6—C5—C4117.90 (18)H16B—C16—H16C109.5
C6—C5—C8118.71 (16)O4—C17—H17A109.5
C4—C5—C8123.33 (17)O4—C17—H17B109.5
C5—C6—C7122.08 (17)H17A—C17—H17B109.5
C5—C6—H6119.0O4—C17—H17C109.5
C7—C6—H6119.0H17A—C17—H17C109.5
C6—C7—C2118.87 (18)H17B—C17—H17C109.5
C6—C7—H7120.6O5—C18—H18A109.5
C2—C7—H7120.6O5—C18—H18B109.5
O2—C8—N1121.41 (19)H18A—C18—H18B109.5
O2—C8—C5122.99 (17)O5—C18—H18C109.5
N1—C8—C5115.55 (16)H18A—C18—H18C109.5
N2—C9—C10121.17 (16)H18B—C18—H18C109.5
N2—C9—H9119.4C9—N2—N1114.68 (15)
C10—C9—H9119.4C8—N1—N2119.82 (16)
C15—C10—C11117.60 (17)C8—N1—H1120.5 (12)
C15—C10—C9123.02 (16)N2—N1—H1119.6 (12)
C11—C10—C9119.39 (16)C2—O1—C1118.76 (17)
O3—C11—C12120.08 (16)C11—O3—C16116.04 (15)
O3—C11—C10118.94 (17)C12—O4—C17116.03 (16)
C12—C11—C10120.84 (16)C13—O5—C18118.47 (17)
O4—C12—C11119.17 (17)H6A—O6—H6B111 (2)
O4—C12—C13120.61 (18)
O1—C2—C3—C4179.10 (18)C10—C11—C12—C131.1 (3)
C7—C2—C3—C42.0 (3)O4—C12—C13—O50.1 (3)
C2—C3—C4—C51.1 (3)C11—C12—C13—O5178.15 (16)
C3—C4—C5—C60.8 (3)O4—C12—C13—C14179.95 (16)
C3—C4—C5—C8176.64 (17)C11—C12—C13—C141.9 (3)
C4—C5—C6—C71.9 (3)O5—C13—C14—C15178.97 (17)
C8—C5—C6—C7175.68 (16)C12—C13—C14—C151.1 (3)
C5—C6—C7—C21.0 (3)C13—C14—C15—C100.6 (3)
O1—C2—C7—C6179.75 (17)C11—C10—C15—C141.4 (2)
C3—C2—C7—C61.0 (3)C9—C10—C15—C14178.98 (16)
C6—C5—C8—O234.9 (2)C10—C9—N2—N1179.79 (14)
C4—C5—C8—O2147.69 (19)O2—C8—N1—N21.2 (3)
C6—C5—C8—N1142.51 (16)C5—C8—N1—N2178.68 (14)
C4—C5—C8—N134.9 (2)C9—N2—N1—C8173.92 (15)
N2—C9—C10—C150.9 (2)C7—C2—O1—C16.8 (3)
N2—C9—C10—C11179.46 (16)C3—C2—O1—C1174.4 (2)
C15—C10—C11—O3175.04 (14)C12—C11—O3—C1675.4 (2)
C9—C10—C11—O34.6 (2)C10—C11—O3—C16108.9 (2)
C15—C10—C11—C120.6 (2)C11—C12—O4—C17114.9 (2)
C9—C10—C11—C12179.80 (15)C13—C12—O4—C1767.1 (2)
O3—C11—C12—O45.3 (3)C14—C13—O5—C181.5 (3)
C10—C11—C12—O4179.15 (15)C12—C13—O5—C18178.49 (19)
O3—C11—C12—C13176.63 (16)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C2–C7 and C10–C15 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1···O60.86 (1)2.07 (1)2.905 (2)164 (2)
C9—H9···O60.932.453.258 (2)146
O6—H6A···O2i0.87 (1)1.98 (1)2.8204 (18)163 (2)
O6—H6B···O2ii0.86 (1)2.11 (1)2.914 (2)156 (2)
O6—H6B···N2ii0.86 (1)2.54 (2)3.1880 (19)133 (2)
C1—H1C···Cg2iii0.962.953.900 (3)171
C16—H16C···Cg1i0.962.793.713 (2)162
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x, y+1/2, z1/2; (iii) x+2, y1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the SAIF, IIT, Madras, for the data collection.

References

First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K., Promdet, P., Horkaew, J. & Chantrapromma, S. (2012). Acta Cryst. E68, o562–o563.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationHorkaew, J., Chantrapromma, S. & Fun, H.-K. (2011). Acta Cryst. E67, o2985.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLoncle, C., Brunel, J. M., Vidal, N., Dherbomez, M. & Letourneux, Y. (2004). Eur. J. Med. Chem. 39, 1067–1071.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMelnyk, P., Leroux, V., Sergheraert, C. & Grellier, P. (2006). Bioorg. Med. Chem. Lett. 16, 31–35.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRaj, K. K. V., Narayana, B., Ashalatha, B. V., Kumari, N. S. & Sarojini, B. K. (2007). Eur. J. Med. Chem. 42, 425–429.  PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds