organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-Methyl-N-(pyrazin-2-yl)propanamide–1,2,4,5-tetra­fluoro-3,6-di­iodo­benzene (2/1)

CROSSMARK_Color_square_no_text.svg

aFaculty of Chemistry, University of Opole, Oleska 48, 45-052 Opole, Poland, and bFaculty of Chemical Technology and Engineering, University of Technology and Life Sciences, Seminaryjna 3, 85-326 Bydgoszcz, Poland
*Correspondence e-mail: bdziuk@uni.opole.pl

Edited by M. Bolte, Goethe-Universität Frankfurt Germany (Received 16 September 2016; accepted 16 September 2016; online 27 September 2016)

In the title compound, C8H11N3O·0.5C6F4I2, mol­ecules of iPr-substituted pyrazine are co-crystallized with 1,4-di­iodo-2,3,5,6-tetra­fluoro­benzene. The complete molecule of 1,4-diiodo-2,3,5,6-tetrafluorobenzene is generated by an inversion centre at the middle of the aromatic ring. Both mol­ecules have normal geometry and the iPr acyl­amine group is disordered over two sets of sites with an occupancy ratio of 0.51:0.49. In the crystal, the components are linked by I⋯N halogen bonds [2.830 (2) Å] and C—H⋯F inter­actions are observed.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The aim of our study was obtain a series of crystals in which halogen bonding is one of the stabilizing forces. It is known that steric effects can be a factor that tunes the type of doubly hydrogen-bonded dimers both in solution and in the solid state. This has previously been shown for 2-acyl­amino­pyridines (Ośmiałowski et al., 2010[Ośmiałowski, B., Kolehmainen, E., Dobosz, R., Gawinecki, R., Kauppinen, R., Valkonen, A., Koivukorpi, J. & Rissanen, K. (2010). J. Phys. Chem. A, 114, 10421-10426.]). Since steric effects may control the stability of the dimer our intention was to check if the dimer carrying a middle-size group (iPr) would be disturbed in the solid state. The same iPr group in 2-acyl­amino­pyridine allowed efficient dimerization, while adamantyl did not either in 2-acyl­amino­pyridine (Ośmiałowski et al., 2010[Ośmiałowski, B., Kolehmainen, E., Dobosz, R., Gawinecki, R., Kauppinen, R., Valkonen, A., Koivukorpi, J. & Rissanen, K. (2010). J. Phys. Chem. A, 114, 10421-10426.]) or in the analogous pyrazine (Dziuk et al., 2016[Dziuk, B., Ośmiałowski, B., Ejsmont, K. & Zarychta, B. (2016). IUCrData, 1, x161258.]). In the present work, the iPr substituted-pyrazine was co-crystallized with 1,4-di­iodo-2,3,5,6-tetra­fluoro­benzene (Fig. 1[link]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. For clarity, only one component of the disordered iso­propyl­acyl­amine group group is shown.

The asymmetric unit comprises partially disordered 2-methyl-N-(pyrazin-2-yl)propanamide and a half-mol­ecule of 1,2,4,5-tetrafluoro-3,6-diiodobenzene. The geometry of 2-methyl-N-(pyrazin-2-yl)propanamide is normal, and corresponds well with similar compounds (Ośmiałowski et al., 2010[Ośmiałowski, B., Kolehmainen, E., Dobosz, R., Gawinecki, R., Kauppinen, R., Valkonen, A., Koivukorpi, J. & Rissanen, K. (2010). J. Phys. Chem. A, 114, 10421-10426.]; Aakeröy et al., 2006[Aakeröy, C. B., Hussain, I. & Desper, J. (2006). Cryst. Growth Des. 6, 474-480.]; Dziuk et al.,2016[Dziuk, B., Ośmiałowski, B., Ejsmont, K. & Zarychta, B. (2016). IUCrData, 1, x161258.]). The iPr acyl­amine group is disordered. The atoms are split between two positions with occupancy factors of 0.49 and 0.51.

In the crystal, I1⋯N2i [2.830 (2) Å; symmetry code: (i) −x + [{3\over 2}], y + [{1\over 2}], −z + [{1\over 2}]] halogen-bonding inter­actions connect the mol­ecules into two C8H11N3O.C6F4I2 units arranged in a herringbone packing agreement (Fig. 2[link]). The units are connected through C—H⋯F contacts (Table 1[link]), forming infinite layers. The estimated distance between adjacent layers is 3.636 Å. The 2,2-dimethyl-N-(pyrazin-2-yl)acetamide mol­ecules are connected by N—H⋯O hydrogen bonds (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯F2i 0.93 2.46 3.388 (3) 178
C4—H4A⋯O1A 0.93 2.29 2.831 (5) 116
C4—H4A⋯O1B 0.93 2.21 2.867 (5) 127
C6A—H6AA⋯I1ii 0.98 3.24 4.035 (5) 140
N3A—H3AA⋯O1Ai 0.86 2.85 3.681 (6) 164
N3B—H3BA⋯O1Bi 0.86 2.13 2.976 (6) 170
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
The crystal packing of the title compound, viewed along the b axis.

Synthesis and crystallization

The parent pyrazine was obtained using a reported procedure by reaction of 2-amino­pyrazine with isobutyryl chloride (Dziuk et al., 2016[Dziuk, B., Ośmiałowski, B., Ejsmont, K. & Zarychta, B. (2016). IUCrData, 1, x161258.]) in the presence of tri­ethyl­amine. The co-crystallization was performed by mixing a 1:1 molar ratio of the studied compounds in chloro­form followed by slow evaporation of the solvent.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The iso­propyl­acyl­amine group is disordered over two positions. Refinement of the site-occupation factors lead to a ratio of 0.509 (7)/0.491 (7). Since they correlate with the displacement parameters, they were fixed at 0.51 and 0.49. The displacement parameters of the disordered atoms were restrained to be equal to those of the atoms to which they are bonded and they were restrained to an isotropic behaviour.

Table 2
Experimental details

Crystal data
Chemical formula C8H11N3O·0.5C6F4I2
Mr 366.13
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 10.6503 (2), 10.6112 (2), 11.2086 (2)
β (°) 97.857 (2)
V3) 1254.82 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.57
Crystal size (mm) 0.03 × 0.02 × 0.01
 
Data collection
Diffractometer Oxford Diffraction Xcalibur
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.])
Tmin, Tmax 0.912, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 7645, 2209, 2073
Rint 0.011
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.015, 0.036, 1.02
No. of reflections 2209
No. of parameters 217
No. of restraints 256
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.63, −0.34
Computer programs: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]), SHELXS2013 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Structural data


Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis CCD (Oxford Diffraction, 2008); data reduction: CrysAlis CCD (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2015).

2-Methyl-N-(pyrazin-2-yl)propanamide–1,2,4,5-tetrafluoro-3,6-diiodobenzene (2/1) top
Crystal data top
C8H11N3O·0.5C6F4I2F(000) = 708
Mr = 366.13Dx = 1.938 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.6503 (2) ÅCell parameters from 7645 reflections
b = 10.6112 (2) Åθ = 3.1–25.0°
c = 11.2086 (2) ŵ = 2.57 mm1
β = 97.857 (2)°T = 100 K
V = 1254.82 (4) Å3Plate, colourless
Z = 40.03 × 0.02 × 0.01 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer
2209 independent reflections
Radiation source: fine-focus sealed tube2073 reflections with I > 2σ(I)
Detector resolution: 1024 x 1024 with blocks 2 x 2 pixels mm-1Rint = 0.011
ω scansθmax = 25.0°, θmin = 3.1°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
h = 129
Tmin = 0.912, Tmax = 1.000k = 1212
7645 measured reflectionsl = 1313
Refinement top
Refinement on F2256 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.015H-atom parameters constrained
wR(F2) = 0.036 w = 1/[σ2(Fo2) + (0.0188P)2 + 1.2735P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.002
2209 reflectionsΔρmax = 0.63 e Å3
217 parametersΔρmin = 0.34 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
I10.94381 (2)0.23915 (2)0.78247 (2)0.01620 (6)
F11.07201 (16)0.23859 (11)1.06151 (12)0.0363 (4)
F20.89029 (14)0.05718 (12)0.77398 (11)0.0293 (3)
N10.66750 (18)0.17037 (18)0.00151 (18)0.0265 (4)
N20.61307 (16)0.05394 (16)0.12506 (15)0.0179 (4)
C10.6789 (2)0.0598 (2)0.05489 (19)0.0227 (5)
C20.6296 (2)0.1675 (2)0.1196 (2)0.0240 (5)
H2A0.62140.24320.16180.029*
C30.60207 (19)0.05664 (19)0.18178 (19)0.0190 (4)
H3A0.57550.05910.26430.023*
C40.6516 (2)0.0536 (2)0.00667 (18)0.0204 (4)
H4A0.66040.12940.03520.024*
N3A0.7268 (4)0.0522 (4)0.1841 (4)0.0145 (10)0.51
H3AA0.75000.12330.21690.017*0.51
O1A0.7017 (4)0.1154 (5)0.2410 (4)0.0215 (10)0.51
C5A0.7410 (5)0.0491 (6)0.2620 (4)0.0156 (10)0.51
C6A0.7550 (4)0.0511 (4)0.3894 (4)0.0182 (8)0.51
H6AA0.71660.13440.37340.022*0.51
C7A0.6945 (8)0.0258 (8)0.4767 (9)0.028 (2)0.51
H7AA0.69880.01880.55170.042*0.51
H7AB0.73830.10470.48970.042*0.51
H7AC0.60740.04100.44520.042*0.51
C8A0.8965 (5)0.0535 (6)0.4199 (5)0.0451 (13)0.51
H8AA0.91960.10400.49050.068*0.51
H8AB0.93320.08880.35380.068*0.51
H8AC0.92740.03080.43490.068*0.51
N3B0.7097 (4)0.0885 (4)0.1731 (4)0.0140 (11)0.49
H3BA0.72290.16610.19340.017*0.49
O1B0.7231 (4)0.1556 (4)0.2297 (4)0.0187 (10)0.49
C5B0.7207 (4)0.0021 (5)0.2620 (4)0.0121 (10)0.49
C6B0.7841 (4)0.0153 (4)0.3948 (4)0.0140 (8)0.49
H6BA0.85110.07930.40580.017*0.49
C7B0.6716 (7)0.0435 (8)0.4675 (8)0.0176 (16)0.49
H7BA0.70410.05540.55100.026*0.49
H7BB0.62840.11840.43660.026*0.49
H7BC0.61360.02620.45960.026*0.49
C8B0.8330 (4)0.1179 (4)0.4183 (4)0.0203 (9)0.49
H8BA0.87710.12340.49880.030*0.49
H8BB0.76290.17560.40940.030*0.49
H8BC0.88980.13890.36180.030*0.49
C90.97972 (18)0.09653 (18)0.91234 (17)0.0146 (4)
C101.0348 (2)0.12112 (18)1.02892 (18)0.0188 (4)
C110.94546 (19)0.02697 (19)0.88570 (18)0.0168 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.02291 (8)0.01364 (8)0.01189 (8)0.00054 (5)0.00183 (5)0.00207 (5)
F10.0709 (11)0.0135 (6)0.0202 (7)0.0117 (6)0.0093 (7)0.0003 (5)
F20.0500 (8)0.0209 (6)0.0134 (6)0.0078 (6)0.0085 (6)0.0003 (5)
N10.0237 (10)0.0266 (10)0.0299 (11)0.0054 (8)0.0066 (8)0.0123 (8)
N20.0209 (9)0.0187 (9)0.0141 (9)0.0022 (7)0.0026 (7)0.0027 (7)
C10.0160 (10)0.0363 (13)0.0169 (11)0.0085 (9)0.0063 (9)0.0085 (9)
C20.0229 (11)0.0191 (11)0.0303 (13)0.0013 (9)0.0053 (9)0.0004 (9)
C30.0201 (11)0.0228 (11)0.0145 (10)0.0002 (8)0.0044 (8)0.0000 (8)
C40.0215 (11)0.0249 (11)0.0148 (11)0.0055 (9)0.0028 (9)0.0010 (8)
N3A0.0159 (13)0.0136 (13)0.0136 (13)0.0007 (9)0.0003 (9)0.0022 (9)
O1A0.0263 (17)0.0198 (17)0.0177 (15)0.0012 (15)0.0009 (13)0.0009 (14)
C5A0.0153 (13)0.0164 (13)0.0154 (13)0.0006 (10)0.0026 (9)0.0017 (9)
C6A0.0192 (12)0.0183 (12)0.0171 (11)0.0010 (9)0.0021 (9)0.0007 (9)
C7A0.032 (3)0.027 (3)0.026 (3)0.0028 (18)0.0053 (18)0.0005 (16)
C8A0.0382 (19)0.057 (2)0.039 (2)0.0001 (17)0.0031 (16)0.0132 (16)
N3B0.0150 (13)0.0136 (13)0.0131 (13)0.0009 (9)0.0005 (9)0.0006 (9)
O1B0.0217 (16)0.0184 (17)0.0157 (15)0.0061 (14)0.0018 (12)0.0010 (13)
C5B0.0118 (13)0.0119 (13)0.0127 (13)0.0011 (9)0.0023 (9)0.0007 (9)
C6B0.0146 (11)0.0141 (11)0.0129 (11)0.0001 (9)0.0008 (9)0.0002 (9)
C7B0.018 (2)0.023 (2)0.013 (2)0.0051 (16)0.0037 (16)0.0014 (15)
C8B0.0250 (16)0.0171 (15)0.0173 (16)0.0028 (14)0.0019 (14)0.0003 (13)
C90.0166 (10)0.0144 (10)0.0131 (10)0.0022 (8)0.0034 (8)0.0028 (7)
C100.0263 (11)0.0118 (9)0.0180 (11)0.0025 (8)0.0014 (9)0.0015 (8)
C110.0204 (11)0.0187 (10)0.0106 (10)0.0004 (8)0.0006 (8)0.0013 (8)
Geometric parameters (Å, º) top
I1—C92.0983 (19)C7A—H7AB0.9600
F1—C101.343 (2)C7A—H7AC0.9600
F2—C111.347 (2)C8A—H8AA0.9600
N1—C21.330 (3)C8A—H8AB0.9600
N1—C11.330 (3)C8A—H8AC0.9600
N2—C31.332 (3)N3B—C5B1.378 (7)
N2—C41.334 (3)N3B—H3BA0.8600
C1—N3B1.356 (5)O1B—C5B1.670 (6)
C1—C41.398 (3)C5B—C6B1.554 (6)
C1—N3A1.471 (5)C6B—C8B1.517 (6)
C2—C31.379 (3)C6B—C7B1.567 (9)
C2—H2A0.9300C6B—H6BA0.9800
C3—H3A0.9300C7B—H7BA0.9600
C4—H4A0.9300C7B—H7BB0.9600
N3A—C5A1.380 (7)C7B—H7BC0.9600
N3A—H3AA0.8600C8B—H8BA0.9600
O1A—C5A0.836 (6)C8B—H8BB0.9600
C5A—C6A1.770 (7)C8B—H8BC0.9600
C6A—C7A1.487 (10)C9—C111.382 (3)
C6A—C8A1.500 (7)C9—C101.382 (3)
C6A—H6AA0.9800C10—C11i1.379 (3)
C7A—H7AA0.9600C11—C10i1.379 (3)
C2—N1—C1116.62 (19)C6A—C8A—H8AC109.5
C3—N2—C4117.87 (18)H8AA—C8A—H8AC109.5
N1—C1—N3B105.1 (3)H8AB—C8A—H8AC109.5
N1—C1—C4121.70 (19)C1—N3B—C5B122.3 (4)
N3B—C1—C4133.0 (3)C1—N3B—H3BA118.8
N1—C1—N3A120.9 (2)C5B—N3B—H3BA118.8
C4—C1—N3A117.4 (3)N3B—C5B—C6B137.6 (4)
N1—C2—C3122.5 (2)N3B—C5B—O1B121.8 (4)
N1—C2—H2A118.7C6B—C5B—O1B95.8 (4)
C3—C2—H2A118.7C8B—C6B—C5B100.2 (3)
N2—C3—C2120.77 (19)C8B—C6B—C7B110.8 (5)
N2—C3—H3A119.6C5B—C6B—C7B104.6 (4)
C2—C3—H3A119.6C8B—C6B—H6BA113.4
N2—C4—C1120.5 (2)C5B—C6B—H6BA113.4
N2—C4—H4A119.7C7B—C6B—H6BA113.4
C1—C4—H4A119.7C6B—C7B—H7BA109.5
C5A—N3A—C1131.2 (4)C6B—C7B—H7BB109.5
C5A—N3A—H3AA114.4H7BA—C7B—H7BB109.5
C1—N3A—H3AA114.4C6B—C7B—H7BC109.5
O1A—C5A—N3A118.0 (6)H7BA—C7B—H7BC109.5
O1A—C5A—C6A135.7 (6)H7BB—C7B—H7BC109.5
N3A—C5A—C6A91.8 (4)C6B—C8B—H8BA109.5
C7A—C6A—C8A111.8 (5)C6B—C8B—H8BB109.5
C7A—C6A—C5A101.9 (5)H8BA—C8B—H8BB109.5
C8A—C6A—C5A99.5 (4)C6B—C8B—H8BC109.5
C7A—C6A—H6AA114.1H8BA—C8B—H8BC109.5
C8A—C6A—H6AA114.1H8BB—C8B—H8BC109.5
C5A—C6A—H6AA114.1C11—C9—C10116.65 (18)
C6A—C7A—H7AA109.5C11—C9—I1121.09 (14)
C6A—C7A—H7AB109.5C10—C9—I1122.23 (15)
H7AA—C7A—H7AB109.5F1—C10—C11i118.16 (18)
C6A—C7A—H7AC109.5F1—C10—C9120.23 (18)
H7AA—C7A—H7AC109.5C11i—C10—C9121.60 (19)
H7AB—C7A—H7AC109.5F2—C11—C10i118.57 (18)
C6A—C8A—H8AA109.5F2—C11—C9119.68 (17)
C6A—C8A—H8AB109.5C10i—C11—C9121.75 (18)
H8AA—C8A—H8AB109.5
Symmetry code: (i) x+2, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···F2ii0.932.463.388 (3)178
C4—H4A···O1A0.932.292.831 (5)116
C4—H4A···O1B0.932.212.867 (5)127
C6A—H6AA···I1iii0.983.244.035 (5)140
N3A—H3AA···O1Aii0.862.853.681 (6)164
N3B—H3BA···O1Bii0.862.132.976 (6)170
Symmetry codes: (ii) x+3/2, y+1/2, z+1/2; (iii) x1/2, y+1/2, z1/2.
 

References

First citationAakeröy, C. B., Hussain, I. & Desper, J. (2006). Cryst. Growth Des. 6, 474–480.  Google Scholar
First citationDziuk, B., Ośmiałowski, B., Ejsmont, K. & Zarychta, B. (2016). IUCrData, 1, x161258.  Google Scholar
First citationOśmiałowski, B., Kolehmainen, E., Dobosz, R., Gawinecki, R., Kauppinen, R., Valkonen, A., Koivukorpi, J. & Rissanen, K. (2010). J. Phys. Chem. A, 114, 10421–10426.  Web of Science PubMed Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds