organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4-Fluoro-N-methyl-N-nitro­aniline

aFaculty of Chemistry, University of Opole, Oleska 48, 45-052 Opole, Poland
*Correspondence e-mail: katarzyna.gajda@uni.opole.pl

Edited by M. Bolte, Goethe-Universität Frankfurt Germany (Received 8 September 2016; accepted 12 September 2016; online 16 September 2016)

Mol­ecules of the title compound, C7H7FN2O2, are composed of a nitramine group which is twisted with the respect to the aromatic ring, with an N—N—C—C torsion angle of −117.38 (12)°. In the mol­ecule, the N—N bond length [1.3510 (15) Å] indicates some double-bond character, while the angle between the aromatic ring and the nitramine group rules out further delocalization in the mol­ecule. In the crystal, C—H⋯F hydrogen bonds connect the mol­ecules into C11(6) chains along the a axis. C—H⋯O hydrogen bonds form, which feature R22(12) loops and further connect these chains.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Nitro­amines find applications in rocket fuels and explosive devices (Williams, 1982[Williams, D. H. L. (1982). In The Chemistry of Amino, Nitroso and Nitro Compounds and Their Derivatives. Vol. 1. Chichester: John Wiley and Sons.]). As a result of the unusual properties of the N—N bond, N-nitro­amines are very active in photochemical reactions (Mialocq & Stephenson, 1986[Mialocq, J. C. & Stephenson, J. C. (1986). Chem. Phys. 106, 281-291.]).

In the mol­ecule (Fig. 1[link]), the nitramine group is twisted with the respect to the aromatic ring, with an N1—N2—C1—C2 torsion angle of −117.38 (12)°. The N2—N3 bond length is notably shorter [1.3510 (15) Å] than a typical N—N single bond (1.42 Å; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]), but longer than the distance characteristic for an N=N double bond (1.24 Å; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]), indicating partial double-bond character. The geometry of the nitro­amine group is normal, and corresponds well those in with similar compounds (Ejsmont et al., 1998[Ejsmont, K., Kyzioł, J., Daszkiewicz, Z. & Bujak, M. (1998). Acta Cryst. C54, 672-674.]; Zarychta et al., 2005a[Zarychta, B., Daszkiewicz, Z. & Zaleski, J. (2005a). Acta Cryst. E61, o1897-o1899.],b[Zarychta, B., Piecyk-Mizgała, A., Daszkiewicz, Z. & Zaleski, J. (2005b). Acta Cryst. C61, o515-o517.], 2011[Zarychta, B., Zaleski, J., Kyzioł, J., Daszkiewicz, Z. & Jelsch, C. (2011). Acta Cryst. B67, 250-262.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

In the crystal, weak C6—H6⋯F1 hydrogen bonds (Fig. 2[link] and Table 1[link]) connect the mol­ecules into C11(6) chains along the a axis. C—H⋯O contacts further connect the mol­ecules into chains featuring R22(12) loops.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯F1i 0.958 (15) 2.366 (15) 3.1730 (15) 141.7 (12)
C6—H6⋯O2ii 0.958 (15) 2.623 (15) 3.3298 (15) 131.0 (11)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) -x+2, -y, -z+1.
[Figure 2]
Figure 2
The crystal packing of the title compound, viewed along the a axis. The C—H⋯F hydrogen bonds are shown as dashed lines.

Synthesis and crystallization

The title compound was obtained by a previously reported nitration reaction (Daszkiewicz et al., 1994[Daszkiewicz, Z., Domański, A. & Kyzioł, J. B. (1994). Org. Prep. Proced. Int. 26, 337-341.]). The crude product was crystallized from a mixture of diethyl ether with n-hexane (1:4) in 79% yield, m.p. 137–138°C.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C7H7FN2O2
Mr 170.15
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 100
a, b, c (Å) 13.1126 (5), 6.8916 (3), 16.1831 (6)
V3) 1462.41 (10)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.13
Crystal size (mm) 0.05 × 0.05 × 0.04
 
Data collection
Diffractometer Oxford Diffraction Xcalibur
No. of measured, independent and observed [I > 2σ(I)] reflections 9125, 1434, 1245
Rint 0.025
(sin θ/λ)max−1) 0.616
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.085, 1.04
No. of reflections 1434
No. of parameters 138
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.20, −0.16
Computer programs: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]), SHELXS2014/7 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Structural data


Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis CCD (Oxford Diffraction, 2008); data reduction: CrysAlis CCD (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS2014/7 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL2014/7 (Sheldrick, 2015).

4-Fluoro-N-methyl-N-nitroaniline top
Crystal data top
C7H7FN2O2Dx = 1.546 Mg m3
Mr = 170.15Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 9125 reflections
a = 13.1126 (5) Åθ = 3.0–26.0°
b = 6.8916 (3) ŵ = 0.13 mm1
c = 16.1831 (6) ÅT = 100 K
V = 1462.41 (10) Å3Plate, colourless
Z = 80.05 × 0.05 × 0.04 mm
F(000) = 704
Data collection top
Oxford Diffraction Xcalibur
diffractometer
1245 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.025
Detector resolution: 1024 x 1024 with blocks 2 x 2 pixels mm-1θmax = 26.0°, θmin = 3.0°
ω scansh = 1616
9125 measured reflectionsk = 85
1434 independent reflectionsl = 1919
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.030 w = 1/[σ2(Fo2) + (0.0481P)2 + 0.3197P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.085(Δ/σ)max = 0.001
S = 1.04Δρmax = 0.20 e Å3
1434 reflectionsΔρmin = 0.16 e Å3
138 parametersExtinction correction: SHELXL-2014/7 (Sheldrick 2014, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0142 (14)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.62328 (5)0.21268 (11)0.47654 (5)0.0324 (2)
O11.16296 (7)0.15293 (15)0.32855 (6)0.0335 (3)
O21.03374 (7)0.03829 (12)0.35186 (5)0.0291 (3)
N11.01031 (8)0.28024 (14)0.34758 (7)0.0255 (3)
N21.07221 (8)0.12384 (15)0.34329 (6)0.0236 (3)
C10.90945 (9)0.25393 (17)0.38054 (8)0.0218 (3)
C20.82638 (10)0.28901 (17)0.33025 (8)0.0244 (3)
H20.8369 (11)0.324 (2)0.2744 (10)0.028 (4)*
C30.72915 (10)0.27567 (17)0.36275 (9)0.0244 (3)
H30.6743 (12)0.302 (2)0.3304 (9)0.029 (4)*
C40.71891 (9)0.22704 (17)0.44471 (9)0.0236 (3)
C50.80010 (10)0.19109 (18)0.49632 (8)0.0242 (3)
H50.7867 (11)0.156 (2)0.5526 (10)0.030 (4)*
C60.89695 (10)0.20558 (17)0.46345 (8)0.0229 (3)
H60.9547 (11)0.181 (2)0.4981 (10)0.029 (4)*
C71.05729 (12)0.4711 (2)0.34364 (9)0.0294 (3)
H7A1.0971 (13)0.483 (2)0.2957 (12)0.050 (5)*
H7B1.0990 (13)0.491 (3)0.3897 (12)0.052 (5)*
H7C1.0042 (15)0.562 (3)0.3432 (10)0.050 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0206 (4)0.0365 (5)0.0401 (5)0.0010 (3)0.0042 (3)0.0017 (3)
O10.0247 (5)0.0407 (6)0.0351 (6)0.0014 (4)0.0086 (4)0.0007 (4)
O20.0358 (5)0.0203 (5)0.0312 (5)0.0008 (4)0.0035 (4)0.0002 (4)
N10.0264 (6)0.0195 (5)0.0306 (6)0.0001 (4)0.0041 (5)0.0009 (4)
N20.0272 (6)0.0264 (6)0.0173 (5)0.0017 (5)0.0015 (4)0.0011 (4)
C10.0237 (6)0.0161 (5)0.0256 (7)0.0006 (5)0.0019 (5)0.0022 (5)
C20.0341 (8)0.0173 (6)0.0218 (7)0.0013 (5)0.0019 (5)0.0007 (5)
C30.0260 (7)0.0184 (6)0.0287 (7)0.0021 (5)0.0071 (5)0.0008 (5)
C40.0219 (6)0.0179 (6)0.0311 (7)0.0004 (5)0.0021 (5)0.0036 (5)
C50.0281 (7)0.0226 (6)0.0219 (7)0.0006 (5)0.0003 (5)0.0005 (5)
C60.0230 (7)0.0216 (7)0.0242 (7)0.0003 (5)0.0037 (5)0.0012 (5)
C70.0337 (8)0.0240 (7)0.0305 (8)0.0052 (6)0.0047 (6)0.0013 (5)
Geometric parameters (Å, º) top
F1—C41.3593 (14)C3—C41.375 (2)
O1—N21.2301 (14)C3—H30.908 (15)
O2—N21.2337 (14)C4—C51.3756 (18)
N1—N21.3510 (15)C5—C61.3805 (18)
N1—C11.4376 (16)C5—H50.959 (15)
N1—C71.4537 (16)C6—H60.958 (15)
C1—C21.3811 (18)C7—H7A0.939 (19)
C1—C61.3922 (18)C7—H7B0.935 (19)
C2—C31.3822 (19)C7—H7C0.938 (19)
C2—H20.944 (16)
N2—N1—C1118.11 (10)F1—C4—C3118.26 (12)
N2—N1—C7117.71 (11)F1—C4—C5118.09 (12)
C1—N1—C7121.35 (10)C3—C4—C5123.65 (12)
O1—N2—O2124.40 (11)C4—C5—C6117.71 (12)
O1—N2—N1117.46 (10)C4—C5—H5118.7 (9)
O2—N2—N1118.11 (10)C6—C5—H5123.5 (9)
C2—C1—C6121.14 (12)C5—C6—C1119.79 (12)
C2—C1—N1119.00 (11)C5—C6—H6119.2 (9)
C6—C1—N1119.74 (11)C1—C6—H6121.0 (9)
C1—C2—C3119.44 (12)N1—C7—H7A110.6 (10)
C1—C2—H2119.5 (9)N1—C7—H7B110.1 (11)
C3—C2—H2121.0 (9)H7A—C7—H7B108.8 (16)
C4—C3—C2118.27 (12)N1—C7—H7C107.0 (11)
C4—C3—H3121.8 (9)H7A—C7—H7C110.3 (14)
C2—C3—H3119.9 (9)H7B—C7—H7C110.0 (15)
C1—N1—N2—O1167.89 (10)N1—C1—C2—C3176.06 (11)
C7—N1—N2—O16.67 (15)C1—C2—C3—C40.15 (18)
C1—N1—N2—O214.26 (15)C2—C3—C4—F1179.58 (10)
C7—N1—N2—O2175.47 (11)C2—C3—C4—C50.09 (19)
N2—N1—C1—C2117.38 (12)F1—C4—C5—C6179.86 (10)
C7—N1—C1—C282.13 (15)C3—C4—C5—C60.20 (18)
N2—N1—C1—C666.58 (15)C4—C5—C6—C10.42 (18)
C7—N1—C1—C693.91 (15)C2—C1—C6—C50.37 (18)
C6—C1—C2—C30.08 (18)N1—C1—C6—C5176.33 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···F1i0.958 (15)2.366 (15)3.1730 (15)141.7 (12)
C6—H6···O2ii0.958 (15)2.623 (15)3.3298 (15)131.0 (11)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+2, y, z+1.
 

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDaszkiewicz, Z., Domański, A. & Kyzioł, J. B. (1994). Org. Prep. Proced. Int. 26, 337–341.  CrossRef CAS Google Scholar
First citationEjsmont, K., Kyzioł, J., Daszkiewicz, Z. & Bujak, M. (1998). Acta Cryst. C54, 672–674.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMialocq, J. C. & Stephenson, J. C. (1986). Chem. Phys. 106, 281–291.  CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWilliams, D. H. L. (1982). In The Chemistry of Amino, Nitroso and Nitro Compounds and Their Derivatives. Vol. 1. Chichester: John Wiley and Sons.  Google Scholar
First citationZarychta, B., Daszkiewicz, Z. & Zaleski, J. (2005a). Acta Cryst. E61, o1897–o1899.  CSD CrossRef IUCr Journals Google Scholar
First citationZarychta, B., Piecyk-Mizgała, A., Daszkiewicz, Z. & Zaleski, J. (2005b). Acta Cryst. C61, o515–o517.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationZarychta, B., Zaleski, J., Kyzioł, J., Daszkiewicz, Z. & Jelsch, C. (2011). Acta Cryst. B67, 250–262.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds