organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-Amino-4-methyl­pyridinium 4-hy­dr­oxy­benzoate

aResearch and Development Centre, Bharathiar University, Coimbatore 641 046, India, bDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India, cDepartment of Physics, Alagappa University, Karaikkudi 630 003, India, and dPost Graduate and Research Department of Physics, The American College, Madurai 625 002, India
*Correspondence e-mail: israel.samuel@gmail.com, chakkaravarthi_2005@yahoo.com

Edited by M. Bolte, Goethe-Universität Frankfurt Germany (Received 4 September 2016; accepted 7 September 2016; online 13 September 2016)

In the title mol­ecular salt, C6H9N2+·C7H5O3, the cation is protonated at the pyridine N atom and the anion is deprotonated. The pyridine ring is inclined at an angle of 24.96 (11)° to the benzene ring. In the crystal, adjacent anions and cations are linked by a pair of N—H⋯O hydrogen bonds, generating an R22(8) ring motif; these motifs are further connected by another N—H⋯O and O—H⋯O hydrogen bonds into a three-dimensional network. The crystal structure also features weak C—H⋯O inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Pyridine derivatives are known to exhibit anti-inflammatory (Abdel-Alim et al., 2005[Abdel-Alim, A. M., El-Shorbagi, A. A., Abdel-Moty, S. G. & Abdel-Allah, H. H. M. (2005). Arch. Pharm. Res. 28, 637-647.]) and anxiolytic (Spanka et al., 2010[Spanka, C., Glatthar, R., Desrayaud, S., Fendt, M., Orain, D., Troxler, T. & Vranesic, I. (2010). Bioorg. Med. Chem. Lett. 20, 184-188.]) activities.

We report the synthesis and the crystal structure of the title mol­ecular salt (Fig. 1[link]). The asymmetric unit comprises a 2-amino-4-methyl­pyridinium cation protonated at the pyridine N (N1) atom and a deprotonated 4-methyl­benzoate anion. The benzene ring (C7–C12) makes a dihedral angle of 24.96 (11)° with the pyridine ring (N1/C1–C5). Bond lengths are comparable with those in reported structures (Sivakumar et al., 2016a[Sivakumar, P., Sudhahar, S., Israel, S. & Chakkaravarthi, G. (2016a). IUCrData, 1, x160747.],b[Sivakumar, P., Sudhahar, S., Gunasekaran, B., Israel, S. & Chakkaravarthi, G. (2016b). IUCrData, 1, x160817.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title mol­ecular salt, with atom labelling and 30% probability displacement ellipsoids.

In the crystal, anions and cations are linked by N1—H1⋯O2i and N2—H2A⋯O1i hydrogen bonds, generating an R22(8) ring motif (Fig. 2[link]) and further connected by N2—H2B⋯O2ii and O—H⋯Oiii hydrogen bonds (Table 1[link]) into an infinite three-dimensional network. The crystal structure also features weak inter­ionic C—H⋯O inter­actions (Table 1[link], Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.87 (1) 1.81 (1) 2.666 (2) 174 (3)
N2—H2A⋯O1i 0.86 (1) 1.95 (1) 2.806 (3) 172 (3)
N2—H2B⋯O2ii 0.86 (1) 2.05 (1) 2.887 (3) 167 (2)
O3—H3⋯O1iii 0.83 (1) 1.87 (1) 2.677 (2) 167 (3)
C6—H6C⋯O1iv 0.96 2.58 3.505 (4) 161
Symmetry codes: (i) -x+1, -y, -z+2; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
A partial view of the crystal packing showing the R22(8) ring motif.
[Figure 3]
Figure 3
The crystal packing of the title mol­ecular salt viewed along b axis. The hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonds have been omitted for clarity.

Synthesis and crystallization

The title salt was synthesized using the raw materials 4-hy­droxy benzoic acid (0.69 g) and 2-amino 4-methyl­pyridine (0.54 g) in an equimolar ratio. When these reactants were dissolved in 10 ml of methanol a white precipitate was formed. The precipitate was dissolved in 20 ml of water and kept at room temperature for slow evaporation. After 30 days, crystals suitable for X-ray diffraction were harvested.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The reflection (100) was omitted during refinement because it was obscured by the beamstop.

Table 2
Experimental details

Crystal data
Chemical formula C6H9N2+·C7H5O3−
Mr 246.26
Crystal system, space group Monoclinic, P21/c
Temperature (K) 295
a, b, c (Å) 13.069 (1), 9.1387 (6), 11.3367 (9)
β (°) 112.841 (3)
V3) 1247.81 (16)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.26 × 0.24 × 0.18
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.682, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 21655, 4159, 2301
Rint 0.034
(sin θ/λ)max−1) 0.769
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.199, 1.04
No. of reflections 4159
No. of parameters 179
No. of restraints 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.23, −0.26
Computer programs: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2016 (Sheldrick, 2015) and PLATON (Spek, 2009).

2-Amino-4-methylpyridinium 4-hydroxybenzoate top
Crystal data top
C6H9N2+·C7H5O3F(000) = 520
Mr = 246.26Dx = 1.311 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.069 (1) ÅCell parameters from 5844 reflections
b = 9.1387 (6) Åθ = 2.8–32.5°
c = 11.3367 (9) ŵ = 0.10 mm1
β = 112.841 (3)°T = 295 K
V = 1247.81 (16) Å3Block, colourless
Z = 40.26 × 0.24 × 0.18 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2301 reflections with I > 2σ(I)
ω and φ scanRint = 0.034
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
θmax = 33.1°, θmin = 2.8°
Tmin = 0.682, Tmax = 0.747h = 1919
21655 measured reflectionsk = 1313
4159 independent reflectionsl = 1716
Refinement top
Refinement on F24 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.069H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.199 w = 1/[σ2(Fo2) + (0.0694P)2 + 0.7446P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
4159 reflectionsΔρmax = 0.23 e Å3
179 parametersΔρmin = 0.26 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.52644 (16)0.3239 (2)0.90045 (18)0.0392 (4)
C20.44042 (17)0.4162 (2)0.82341 (19)0.0425 (5)
H20.4512280.4743910.7619330.051*
C30.34175 (17)0.4219 (2)0.8372 (2)0.0465 (5)
C40.32794 (19)0.3336 (3)0.9316 (2)0.0555 (6)
H40.2608970.3340770.9423140.067*
C50.41194 (19)0.2487 (3)1.0062 (2)0.0531 (6)
H50.4029790.1921891.0697490.064*
C60.2488 (2)0.5176 (4)0.7536 (3)0.0755 (8)
H6A0.2619450.6165090.7844520.113*
H6B0.1799930.4835810.7554750.113*
H6C0.2450720.5141340.6674010.113*
C70.16520 (15)0.0386 (2)0.75602 (18)0.0382 (4)
C80.1671 (2)0.0718 (3)0.6378 (2)0.0663 (8)
H80.2239150.0346290.6163050.080*
C90.0869 (2)0.1585 (4)0.5514 (3)0.0761 (9)
H90.0888210.1771120.4715840.091*
C100.00385 (18)0.2180 (3)0.5823 (2)0.0504 (5)
C110.00016 (16)0.1854 (2)0.6991 (2)0.0429 (5)
H110.0559590.2248570.7211430.051*
C120.07840 (16)0.0946 (2)0.78317 (19)0.0408 (4)
H120.0730670.0702640.8602270.049*
C130.25253 (16)0.0537 (2)0.84967 (18)0.0389 (4)
N10.50941 (15)0.2439 (2)0.99064 (17)0.0435 (4)
N20.62321 (17)0.3102 (3)0.8892 (2)0.0581 (5)
O10.23876 (12)0.09774 (19)0.94694 (14)0.0525 (4)
O20.33935 (12)0.08189 (18)0.83009 (14)0.0511 (4)
O30.07119 (16)0.3049 (2)0.49415 (18)0.0724 (6)
H10.560 (2)0.189 (3)1.045 (2)0.090 (10)*
H2A0.6699 (18)0.247 (2)0.936 (2)0.067 (8)*
H2B0.6333 (19)0.356 (2)0.8288 (17)0.051 (7)*
H30.115 (2)0.339 (3)0.523 (3)0.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0423 (10)0.0429 (10)0.0366 (9)0.0021 (8)0.0198 (8)0.0028 (8)
C20.0474 (11)0.0466 (11)0.0378 (10)0.0020 (9)0.0211 (8)0.0040 (8)
C30.0436 (11)0.0502 (12)0.0463 (11)0.0040 (9)0.0182 (9)0.0043 (9)
C40.0417 (11)0.0720 (16)0.0605 (13)0.0011 (11)0.0285 (10)0.0005 (12)
C50.0514 (12)0.0656 (15)0.0517 (12)0.0034 (11)0.0302 (10)0.0096 (11)
C60.0573 (15)0.088 (2)0.0773 (19)0.0229 (14)0.0215 (13)0.0161 (16)
C70.0378 (9)0.0423 (10)0.0407 (10)0.0032 (8)0.0220 (8)0.0025 (8)
C80.0663 (15)0.0905 (19)0.0618 (14)0.0410 (14)0.0465 (13)0.0314 (14)
C90.0796 (18)0.109 (2)0.0623 (15)0.0500 (17)0.0522 (14)0.0408 (16)
C100.0479 (11)0.0562 (13)0.0535 (12)0.0161 (10)0.0267 (10)0.0137 (10)
C110.0389 (9)0.0489 (12)0.0483 (11)0.0036 (8)0.0250 (8)0.0006 (9)
C120.0419 (10)0.0496 (11)0.0382 (9)0.0018 (8)0.0234 (8)0.0014 (8)
C130.0388 (9)0.0429 (10)0.0385 (10)0.0016 (8)0.0190 (8)0.0002 (8)
N10.0435 (9)0.0499 (10)0.0422 (9)0.0014 (8)0.0221 (7)0.0053 (8)
N20.0508 (11)0.0753 (15)0.0609 (12)0.0146 (10)0.0354 (10)0.0203 (11)
O10.0433 (8)0.0731 (11)0.0479 (8)0.0088 (7)0.0252 (7)0.0157 (8)
O20.0471 (8)0.0666 (10)0.0483 (8)0.0169 (7)0.0279 (7)0.0115 (7)
O30.0717 (12)0.0929 (14)0.0660 (11)0.0431 (11)0.0412 (9)0.0318 (10)
Geometric parameters (Å, º) top
C1—N21.326 (3)C7—C131.483 (3)
C1—N11.344 (3)C8—C91.375 (3)
C1—C21.406 (3)C8—H80.9300
C2—C31.359 (3)C9—C101.376 (3)
C2—H20.9300C9—H90.9300
C3—C41.407 (3)C10—O31.353 (3)
C3—C61.498 (3)C10—C111.379 (3)
C4—C51.342 (3)C11—C121.375 (3)
C4—H40.9300C11—H110.9300
C5—N11.353 (3)C12—H120.9300
C5—H50.9300C13—O11.251 (2)
C6—H6A0.9600C13—O21.264 (2)
C6—H6B0.9600N1—H10.865 (10)
C6—H6C0.9600N2—H2A0.859 (10)
C7—C121.384 (3)N2—H2B0.855 (10)
C7—C81.384 (3)O3—H30.827 (10)
N2—C1—N1117.89 (19)C9—C8—H8119.3
N2—C1—C2124.03 (19)C7—C8—H8119.3
N1—C1—C2118.07 (18)C8—C9—C10120.4 (2)
C3—C2—C1121.14 (19)C8—C9—H9119.8
C3—C2—H2119.4C10—C9—H9119.8
C1—C2—H2119.4O3—C10—C9117.5 (2)
C2—C3—C4118.3 (2)O3—C10—C11123.33 (19)
C2—C3—C6121.5 (2)C9—C10—C11119.2 (2)
C4—C3—C6120.3 (2)C12—C11—C10119.96 (18)
C5—C4—C3119.7 (2)C12—C11—H11120.0
C5—C4—H4120.1C10—C11—H11120.0
C3—C4—H4120.1C11—C12—C7121.69 (18)
C4—C5—N1121.2 (2)C11—C12—H12119.2
C4—C5—H5119.4C7—C12—H12119.2
N1—C5—H5119.4O1—C13—O2122.34 (18)
C3—C6—H6A109.5O1—C13—C7118.69 (17)
C3—C6—H6B109.5O2—C13—C7118.95 (17)
H6A—C6—H6B109.5C1—N1—C5121.58 (19)
C3—C6—H6C109.5C1—N1—H1123 (2)
H6A—C6—H6C109.5C5—N1—H1115 (2)
H6B—C6—H6C109.5C1—N2—H2A118.8 (19)
C12—C7—C8117.33 (18)C1—N2—H2B118.6 (16)
C12—C7—C13121.37 (17)H2A—N2—H2B122 (2)
C8—C7—C13121.29 (17)C10—O3—H3110 (2)
C9—C8—C7121.4 (2)
N2—C1—C2—C3177.9 (2)O3—C10—C11—C12179.2 (2)
N1—C1—C2—C31.7 (3)C9—C10—C11—C120.1 (4)
C1—C2—C3—C40.5 (3)C10—C11—C12—C72.6 (3)
C1—C2—C3—C6178.7 (2)C8—C7—C12—C113.0 (3)
C2—C3—C4—C51.0 (3)C13—C7—C12—C11177.11 (19)
C6—C3—C4—C5179.8 (2)C12—C7—C13—O110.0 (3)
C3—C4—C5—N11.4 (4)C8—C7—C13—O1169.9 (2)
C12—C7—C8—C90.8 (4)C12—C7—C13—O2168.28 (19)
C13—C7—C8—C9179.3 (3)C8—C7—C13—O211.9 (3)
C7—C8—C9—C101.8 (5)N2—C1—N1—C5178.3 (2)
C8—C9—C10—O3178.6 (3)C2—C1—N1—C51.3 (3)
C8—C9—C10—C112.2 (5)C4—C5—N1—C10.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.87 (1)1.81 (1)2.666 (2)174 (3)
N2—H2A···O1i0.86 (1)1.95 (1)2.806 (3)172 (3)
N2—H2B···O2ii0.86 (1)2.05 (1)2.887 (3)167 (2)
O3—H3···O1iii0.83 (1)1.87 (1)2.677 (2)167 (3)
C6—H6C···O1iv0.962.583.505 (4)161
Symmetry codes: (i) x+1, y, z+2; (ii) x+1, y+1/2, z+3/2; (iii) x, y+1/2, z+3/2; (iv) x, y+1/2, z1/2.
 

Acknowledgements

The authors acknowledge the SAIF, IIT, Madras for the data collection.

References

First citationAbdel-Alim, A. M., El-Shorbagi, A. A., Abdel-Moty, S. G. & Abdel-Allah, H. H. M. (2005). Arch. Pharm. Res. 28, 637–647.  Web of Science PubMed CAS Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSivakumar, P., Sudhahar, S., Gunasekaran, B., Israel, S. & Chakkaravarthi, G. (2016b). IUCrData, 1, x160817.  Google Scholar
First citationSivakumar, P., Sudhahar, S., Israel, S. & Chakkaravarthi, G. (2016a). IUCrData, 1, x160747.  Google Scholar
First citationSpanka, C., Glatthar, R., Desrayaud, S., Fendt, M., Orain, D., Troxler, T. & Vranesic, I. (2010). Bioorg. Med. Chem. Lett. 20, 184–188.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds