organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-Amino­pyridinium 2,4-di­nitro­phenolate

aDepartment of Physics, Presidency College, Chennai 600 005, India, bDepartment of physics, Aksheyaa College of Engineering, Kancheepuram 603 314, India, and cDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India
*Correspondence e-mail: ntganesh@yahoo.co.in, chakkaravarthi_2005@yahoo.com

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México (Received 26 August 2016; accepted 21 September 2016; online 23 September 2016)

The asymmetric unit of the title organic salt, C5H7N2+·C6H3N2O5, comprises two 2-amino­pyridinium cations and two 2,4-di­nitro­phenolate anions. The cations are protonated at the pyridine N atoms, while the anions are deprotonated at hydroxyl O atoms. In the crystal, bifurcated N—H⋯O hydrogen bonds generate two R12(6), two R21(6), and one R21(4) ring motifs. Adjacent anions and cations are linked by N—H⋯O hydrogen bonds into infinite chains along [110]. Weak C—H⋯O contacts and ππ inter­actions further link the components, forming a complex three-dimensional supra­molecular network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

In order to investigate if pyridine derivatives exhibit biological activities such as anti­viral (Hamdouchi et al., 1999[Hamdouchi, C., de Blas, J., del Prado, M., Gruber, J., Heinz, B. A. & Vance, L. (1999). J. Med. Chem. 42, 50-59.]) or anti­bacterial activity (Rival et al., 1992[Rival, Y., Grassy, G. & Michel, G. (1992). Chem. Pharm. Bull. 40, 1170-1176.]), we synthesized and determined the crystal structure of the title organic salt (Fig. 1[link]). The geometric parameters are in good agreement with those reported for similar structures (Hemamalini & Fun, 2010[Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o2747.]; Sivakumar et al., 2016[Sivakumar, P., Sudhahar, S., Gunasekaran, B., Israel, S. & Chakkaravarthi, G. (2016). IUCrData, 1, x160817.]). There are two independent 2-amino­pyridinium cations and two 2,4-di­nitro­phenolate anions in the asymmetric unit. The cations are protonated at the pyridine N atoms (N5 and N7) and the anions are deprotonated at the hydroxyl O atoms (O1 and O6).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with 30% probability displacement ellipsoids.

In the crystal, pairs of bifurcated hydrogen bonds N6—H6A⋯O1i, N5—H5⋯O1i and N8—H8A⋯O6iii, N7—H7⋯O6iii generate two R21(6) ring motifs. Pairs of hydrogen bonds N5—H5⋯O1i, N5—H5⋯O2i and N7—H7⋯O6iii, N7—H7⋯O10iii generate two R12(6) ring motifs. Finally, the N8—H8B⋯O2i and N8—H8B⋯O3i hydrogen bonds generate an R12(4) ring motif (Figs. 2[link] and 3[link]). Adjacent anions and cations are linked by N—H⋯O hydrogen bonds (Table 1[link]) into infinite chains along [110]. The crystal also features weak C—H⋯O hydrogen bonds and ππ inter­actions between symmetry-related C7–C12 benzene rings [centroid-to-centroid distance: 3.4949 (7) Å; symmetry code: 2 − x, 1 − y, −z], leading to the formation of a three-dimensional network (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5⋯O1i 0.88 (1) 1.92 (1) 2.7304 (16) 152 (2)
N5—H5⋯O2i 0.88 (1) 2.31 (2) 2.9553 (17) 130 (2)
N6—H6A⋯O1i 0.86 2.02 2.7712 (19) 145
N6—H6B⋯O4ii 0.86 2.15 2.9849 (18) 162
N7—H7⋯O6iii 0.88 (1) 1.83 (1) 2.6627 (15) 157 (2)
N7—H7⋯O10iii 0.88 (1) 2.31 (2) 2.8975 (17) 124 (2)
N8—H8A⋯O6iii 0.86 2.04 2.7727 (16) 143
N8—H8B⋯O2i 0.86 2.42 3.2740 (17) 175
N8—H8B⋯O3i 0.86 2.50 3.1445 (17) 132
C3—H3⋯O8 0.93 2.56 3.1944 (18) 126
C18—H18⋯O10iii 0.93 2.51 3.034 (2) 116
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+3, -y+2, -z+1; (iii) -x+1, -y+1, -z.
[Figure 2]
Figure 2
The crystal packing of the title compound viewed along b axis. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.
[Figure 3]
Figure 3
A partial view of the crystal packing of the title compound, showing the ring motifs.

Synthesis and crystallization

The title salt was synthesized from the raw materials 2-amino­pyridine (2.353 g) and 2,4-di­nitro­phenol (4.603 g), which were taken in 1:1 ratio and dissolved in a mixture of water and ethanol, at room temperature. After a period of three weeks, good quality crystals suitable for X-ray diffraction were harvested.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. In the last least-squares cycles, pyridinium N5—H5 and N7—H7 bond lengths were restrained to 0.88 (1) Å.

Table 2
Experimental details

Crystal data
Chemical formula C6H3N2O5·C5H7N2
Mr 278.23
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 295
a, b, c (Å) 7.6303 (2), 9.3142 (3), 17.2518 (5)
α, β, γ (°) 90.339 (2), 99.468 (2), 99.556 (3)
V3) 1191.91 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.13
Crystal size (mm) 0.30 × 0.26 × 0.20
 
Data collection
Diffractometer Bruker APEXII CCD Diffractometer
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.963, 0.975
No. of measured, independent and observed [I > 2σ(I)] reflections 44716, 10159, 5393
Rint 0.040
(sin θ/λ)max−1) 0.823
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.157, 1.01
No. of reflections 10159
No. of parameters 370
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.30, −0.26
Computer programs: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL97 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2015) and PLATON.

2-Aminopyridinium 2,4-dinitrophenolate top
Crystal data top
C5H7N2+·C6H3N2O5Z = 4
Mr = 278.23F(000) = 576
Triclinic, P1Dx = 1.550 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.6303 (2) ÅCell parameters from 9905 reflections
b = 9.3142 (3) Åθ = 2.3–32.4°
c = 17.2518 (5) ŵ = 0.13 mm1
α = 90.339 (2)°T = 295 K
β = 99.468 (2)°Block, colourless
γ = 99.556 (3)°0.30 × 0.26 × 0.20 mm
V = 1191.91 (6) Å3
Data collection top
Bruker APEXII CCD Diffractometer10159 independent reflections
Radiation source: fine-focus sealed tube5393 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ω and φ scanθmax = 35.8°, θmin = 1.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1112
Tmin = 0.963, Tmax = 0.975k = 1515
44716 measured reflectionsl = 2826
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.157 w = 1/[σ2(Fo2) + (0.0596P)2 + 0.2916P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
10159 reflectionsΔρmax = 0.30 e Å3
370 parametersΔρmin = 0.26 e Å3
2 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.026 (2)
Primary atom site location: structure-invariant direct methods
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.37352 (17)0.62615 (14)0.36601 (8)0.0331 (3)
C21.25635 (19)0.51343 (16)0.32011 (8)0.0394 (3)
H21.25100.50880.26590.047*
C31.1515 (2)0.41180 (17)0.35563 (8)0.0424 (3)
H31.07410.33830.32440.051*
C41.15318 (18)0.41126 (15)0.43895 (8)0.0360 (3)
C51.27290 (17)0.53107 (14)0.48189 (7)0.0317 (3)
C61.38030 (18)0.63512 (14)0.44565 (8)0.0332 (3)
H61.45700.71100.47540.040*
C70.92604 (16)0.28396 (13)0.06858 (7)0.0306 (2)
C80.89794 (17)0.41705 (13)0.09385 (7)0.0307 (2)
H80.94710.45250.14460.037*
C90.79599 (16)0.49808 (13)0.04331 (7)0.0291 (2)
C100.71871 (17)0.44915 (13)0.03568 (7)0.0316 (2)
C110.75481 (19)0.30915 (14)0.05728 (8)0.0366 (3)
H110.70770.27140.10780.044*
C120.85390 (18)0.22925 (14)0.00781 (8)0.0352 (3)
H120.87380.13900.02440.042*
C131.1666 (2)0.92922 (16)0.43826 (10)0.0431 (3)
C141.2566 (2)1.03100 (18)0.39219 (12)0.0578 (4)
H141.34141.10860.41610.069*
C151.2192 (3)1.0155 (2)0.31277 (13)0.0631 (5)
H151.27901.08290.28240.076*
C161.0930 (2)0.9006 (2)0.27611 (11)0.0572 (4)
H161.06830.89000.22160.069*
C171.0067 (2)0.80451 (18)0.32117 (9)0.0458 (3)
H170.92130.72690.29760.055*
C180.4901 (2)0.10146 (16)0.09284 (10)0.0461 (3)
H180.42650.07640.04250.055*
C190.5773 (2)0.00349 (16)0.13340 (11)0.0519 (4)
H190.57660.08790.11130.062*
C200.6681 (2)0.04270 (17)0.20908 (11)0.0500 (4)
H200.72760.02380.23820.060*
C210.6711 (2)0.17668 (17)0.24104 (9)0.0454 (3)
H210.73190.20180.29180.055*
C220.58139 (18)0.27768 (15)0.19663 (8)0.0355 (3)
N11.29096 (16)0.54893 (13)0.56547 (6)0.0377 (3)
N21.49156 (17)0.73176 (13)0.33004 (7)0.0404 (3)
N31.03421 (16)0.20195 (13)0.12121 (7)0.0384 (3)
N40.77467 (16)0.63762 (12)0.07403 (7)0.0365 (2)
N51.04392 (16)0.82054 (13)0.40076 (7)0.0392 (3)
N61.1972 (2)0.93352 (16)0.51656 (9)0.0579 (4)
H6A1.13890.86760.54180.069*
H6B1.27521.00220.54190.069*
N70.49370 (16)0.23546 (12)0.12421 (7)0.0354 (2)
N80.5821 (2)0.41215 (14)0.22250 (7)0.0487 (3)
H8A0.52690.47040.19290.058*
H8B0.63770.44110.26880.058*
O11.05465 (16)0.31141 (13)0.46840 (6)0.0534 (3)
O21.21387 (16)0.45502 (13)0.60378 (6)0.0512 (3)
O31.38712 (18)0.65870 (13)0.59828 (6)0.0585 (3)
O41.58993 (18)0.83193 (13)0.37099 (7)0.0587 (3)
O51.4934 (2)0.71793 (14)0.25978 (7)0.0644 (4)
O60.62580 (15)0.51757 (11)0.08511 (6)0.0467 (3)
O71.05377 (18)0.08143 (13)0.09936 (7)0.0594 (3)
O81.10477 (18)0.25497 (14)0.18655 (7)0.0577 (3)
O90.82825 (19)0.66899 (13)0.14377 (7)0.0600 (3)
O100.70515 (18)0.72215 (12)0.02972 (7)0.0575 (3)
H50.993 (2)0.7560 (17)0.4309 (10)0.062 (6)*
H70.441 (2)0.3037 (17)0.0994 (10)0.061 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0341 (6)0.0327 (6)0.0338 (6)0.0077 (5)0.0072 (5)0.0015 (5)
C20.0420 (7)0.0463 (8)0.0291 (6)0.0057 (6)0.0059 (5)0.0037 (5)
C30.0403 (7)0.0467 (8)0.0361 (7)0.0020 (6)0.0039 (6)0.0083 (6)
C40.0329 (6)0.0400 (7)0.0351 (6)0.0052 (5)0.0062 (5)0.0006 (5)
C50.0327 (6)0.0373 (6)0.0260 (5)0.0119 (5)0.0021 (5)0.0002 (5)
C60.0347 (6)0.0324 (6)0.0321 (6)0.0098 (5)0.0005 (5)0.0021 (5)
C70.0297 (6)0.0315 (6)0.0311 (6)0.0059 (5)0.0058 (5)0.0055 (5)
C80.0319 (6)0.0329 (6)0.0269 (5)0.0038 (5)0.0055 (5)0.0006 (4)
C90.0309 (6)0.0270 (5)0.0298 (6)0.0049 (4)0.0062 (5)0.0008 (4)
C100.0306 (6)0.0306 (6)0.0320 (6)0.0042 (5)0.0020 (5)0.0007 (5)
C110.0420 (7)0.0334 (6)0.0311 (6)0.0041 (5)0.0009 (5)0.0043 (5)
C120.0402 (7)0.0285 (6)0.0364 (6)0.0057 (5)0.0053 (5)0.0021 (5)
C130.0402 (7)0.0353 (7)0.0533 (9)0.0097 (6)0.0031 (6)0.0023 (6)
C140.0493 (9)0.0417 (8)0.0791 (13)0.0018 (7)0.0064 (9)0.0119 (8)
C150.0569 (11)0.0608 (11)0.0753 (13)0.0133 (9)0.0178 (9)0.0323 (10)
C160.0553 (10)0.0705 (11)0.0495 (9)0.0182 (9)0.0107 (8)0.0196 (8)
C170.0432 (8)0.0506 (8)0.0433 (8)0.0104 (6)0.0037 (6)0.0052 (6)
C180.0510 (9)0.0380 (7)0.0481 (8)0.0072 (6)0.0057 (7)0.0044 (6)
C190.0586 (10)0.0324 (7)0.0671 (11)0.0108 (7)0.0143 (8)0.0026 (7)
C200.0476 (9)0.0439 (8)0.0628 (10)0.0149 (7)0.0138 (7)0.0207 (7)
C210.0465 (8)0.0513 (8)0.0400 (7)0.0138 (7)0.0057 (6)0.0130 (6)
C220.0367 (7)0.0397 (7)0.0322 (6)0.0083 (5)0.0098 (5)0.0059 (5)
N10.0418 (6)0.0428 (6)0.0289 (5)0.0126 (5)0.0017 (5)0.0020 (5)
N20.0474 (7)0.0342 (6)0.0405 (6)0.0065 (5)0.0099 (5)0.0018 (5)
N30.0412 (6)0.0394 (6)0.0365 (6)0.0121 (5)0.0067 (5)0.0080 (5)
N40.0408 (6)0.0334 (5)0.0363 (6)0.0081 (5)0.0071 (5)0.0035 (4)
N50.0383 (6)0.0377 (6)0.0418 (6)0.0079 (5)0.0055 (5)0.0044 (5)
N60.0649 (9)0.0474 (8)0.0534 (8)0.0024 (7)0.0011 (7)0.0038 (6)
N70.0373 (6)0.0340 (5)0.0361 (6)0.0102 (4)0.0055 (5)0.0019 (4)
N80.0681 (9)0.0452 (7)0.0327 (6)0.0187 (6)0.0007 (6)0.0024 (5)
O10.0567 (7)0.0550 (7)0.0433 (6)0.0106 (5)0.0131 (5)0.0001 (5)
O20.0595 (7)0.0593 (7)0.0341 (5)0.0055 (5)0.0098 (5)0.0095 (5)
O30.0782 (9)0.0574 (7)0.0315 (5)0.0041 (6)0.0004 (5)0.0069 (5)
O40.0673 (8)0.0462 (6)0.0553 (7)0.0109 (5)0.0102 (6)0.0036 (5)
O50.0933 (10)0.0556 (7)0.0434 (6)0.0069 (6)0.0284 (6)0.0014 (5)
O60.0559 (6)0.0421 (5)0.0390 (5)0.0170 (5)0.0097 (5)0.0001 (4)
O70.0781 (8)0.0454 (6)0.0590 (7)0.0306 (6)0.0033 (6)0.0051 (5)
O80.0703 (8)0.0623 (7)0.0386 (6)0.0235 (6)0.0084 (5)0.0035 (5)
O90.0920 (10)0.0498 (6)0.0380 (6)0.0194 (6)0.0027 (6)0.0121 (5)
O100.0790 (8)0.0413 (6)0.0545 (7)0.0296 (6)0.0014 (6)0.0027 (5)
Geometric parameters (Å, º) top
C1—C61.3679 (18)C15—H150.9300
C1—C21.4050 (19)C16—C171.349 (2)
C1—N21.4356 (18)C16—H160.9300
C2—C31.352 (2)C17—N51.3579 (19)
C2—H20.9300C17—H170.9300
C3—C41.4354 (19)C18—C191.349 (2)
C3—H30.9300C18—N71.3517 (18)
C4—O11.2600 (17)C18—H180.9300
C4—C51.4344 (18)C19—C201.390 (2)
C5—C61.3834 (19)C19—H190.9300
C5—N11.4317 (16)C20—C211.356 (2)
C6—H60.9300C20—H200.9300
C7—C81.3731 (17)C21—C221.4109 (19)
C7—C121.3999 (18)C21—H210.9300
C7—N31.4353 (16)C22—N81.3260 (18)
C8—C91.3837 (17)C22—N71.3398 (17)
C8—H80.9300N1—O31.2294 (16)
C9—C101.4324 (17)N1—O21.2296 (15)
C9—N41.4446 (15)N2—O51.2207 (16)
C10—O61.2623 (16)N2—O41.2322 (16)
C10—C111.4361 (18)N3—O71.2222 (16)
C11—C121.3550 (18)N3—O81.2288 (16)
C11—H110.9300N4—O91.2224 (15)
C12—H120.9300N4—O101.2240 (16)
C13—N61.332 (2)N5—H50.882 (9)
C13—N51.3406 (19)N6—H6A0.8600
C13—C141.405 (2)N6—H6B0.8600
C14—C151.355 (3)N7—H70.883 (9)
C14—H140.9300N8—H8A0.8600
C15—C161.386 (3)N8—H8B0.8600
C6—C1—C2120.75 (12)C17—C16—C15118.64 (17)
C6—C1—N2118.96 (12)C17—C16—H16120.7
C2—C1—N2120.27 (12)C15—C16—H16120.7
C3—C2—C1119.28 (12)C16—C17—N5120.29 (16)
C3—C2—H2120.4C16—C17—H17119.9
C1—C2—H2120.4N5—C17—H17119.9
C2—C3—C4123.55 (13)C19—C18—N7121.02 (15)
C2—C3—H3118.2C19—C18—H18119.5
C4—C3—H3118.2N7—C18—H18119.5
O1—C4—C5125.60 (13)C18—C19—C20118.29 (14)
O1—C4—C3120.25 (13)C18—C19—H19120.9
C5—C4—C3114.14 (12)C20—C19—H19120.9
C6—C5—N1115.74 (11)C21—C20—C19120.91 (14)
C6—C5—C4122.36 (12)C21—C20—H20119.5
N1—C5—C4121.89 (12)C19—C20—H20119.5
C1—C6—C5119.88 (12)C20—C21—C22119.47 (15)
C1—C6—H6120.1C20—C21—H21120.3
C5—C6—H6120.1C22—C21—H21120.3
C8—C7—C12120.97 (11)N8—C22—N7118.71 (12)
C8—C7—N3119.05 (11)N8—C22—C21123.35 (13)
C12—C7—N3119.97 (11)N7—C22—C21117.93 (13)
C7—C8—C9119.61 (11)O3—N1—O2120.69 (12)
C7—C8—H8120.2O3—N1—C5118.79 (12)
C9—C8—H8120.2O2—N1—C5120.52 (12)
C8—C9—C10122.42 (11)O5—N2—O4121.99 (13)
C8—C9—N4116.20 (11)O5—N2—C1118.74 (12)
C10—C9—N4121.36 (11)O4—N2—C1119.26 (12)
O6—C10—C9125.87 (11)O7—N3—O8122.03 (12)
O6—C10—C11119.81 (12)O7—N3—C7118.77 (12)
C9—C10—C11114.31 (11)O8—N3—C7119.19 (11)
C12—C11—C10123.39 (12)O9—N4—O10121.52 (12)
C12—C11—H11118.3O9—N4—C9119.03 (11)
C10—C11—H11118.3O10—N4—C9119.45 (11)
C11—C12—C7119.28 (12)C13—N5—C17122.72 (14)
C11—C12—H12120.4C13—N5—H5116.1 (13)
C7—C12—H12120.4C17—N5—H5121.1 (13)
N6—C13—N5118.30 (14)C13—N6—H6A120.0
N6—C13—C14123.98 (16)C13—N6—H6B120.0
N5—C13—C14117.71 (15)H6A—N6—H6B120.0
C15—C14—C13119.64 (17)C22—N7—C18122.36 (12)
C15—C14—H14120.2C22—N7—H7113.5 (13)
C13—C14—H14120.2C18—N7—H7124.1 (13)
C14—C15—C16120.98 (17)C22—N8—H8A120.0
C14—C15—H15119.5C22—N8—H8B120.0
C16—C15—H15119.5H8A—N8—H8B120.0
C6—C1—C2—C31.0 (2)C14—C15—C16—C170.4 (3)
N2—C1—C2—C3177.39 (13)C15—C16—C17—N50.2 (2)
C1—C2—C3—C40.4 (2)N7—C18—C19—C201.3 (2)
C2—C3—C4—O1178.48 (14)C18—C19—C20—C210.9 (3)
C2—C3—C4—C51.7 (2)C19—C20—C21—C220.2 (2)
O1—C4—C5—C6178.49 (13)C20—C21—C22—N8177.98 (15)
C3—C4—C5—C61.68 (19)C20—C21—C22—N70.9 (2)
O1—C4—C5—N10.4 (2)C6—C5—N1—O35.60 (18)
C3—C4—C5—N1179.45 (12)C4—C5—N1—O3175.45 (13)
C2—C1—C6—C51.00 (19)C6—C5—N1—O2173.28 (12)
N2—C1—C6—C5177.42 (11)C4—C5—N1—O25.67 (19)
N1—C5—C6—C1179.36 (11)C6—C1—N2—O5175.34 (13)
C4—C5—C6—C10.42 (19)C2—C1—N2—O53.1 (2)
C12—C7—C8—C90.38 (19)C6—C1—N2—O43.44 (19)
N3—C7—C8—C9179.11 (11)C2—C1—N2—O4178.14 (13)
C7—C8—C9—C100.63 (19)C8—C7—N3—O7177.56 (13)
C7—C8—C9—N4179.24 (11)C12—C7—N3—O73.70 (19)
C8—C9—C10—O6179.39 (13)C8—C7—N3—O82.72 (19)
N4—C9—C10—O60.8 (2)C12—C7—N3—O8176.02 (13)
C8—C9—C10—C110.54 (18)C8—C9—N4—O98.16 (18)
N4—C9—C10—C11179.09 (11)C10—C9—N4—O9173.21 (13)
O6—C10—C11—C12179.70 (13)C8—C9—N4—O10171.16 (13)
C9—C10—C11—C120.2 (2)C10—C9—N4—O107.47 (19)
C10—C11—C12—C70.0 (2)N6—C13—N5—C17178.19 (14)
C8—C7—C12—C110.1 (2)C14—C13—N5—C171.1 (2)
N3—C7—C12—C11178.80 (12)C16—C17—N5—C130.6 (2)
N6—C13—C14—C15178.41 (16)N8—C22—N7—C18178.45 (14)
N5—C13—C14—C150.8 (2)C21—C22—N7—C180.5 (2)
C13—C14—C15—C160.1 (3)C19—C18—N7—C220.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5···O1i0.88 (1)1.92 (1)2.7304 (16)152 (2)
N5—H5···O2i0.88 (1)2.31 (2)2.9553 (17)130 (2)
N6—H6A···O1i0.862.022.7712 (19)145
N6—H6B···O4ii0.862.152.9849 (18)162
N7—H7···O6iii0.88 (1)1.83 (1)2.6627 (15)157 (2)
N7—H7···O10iii0.88 (1)2.31 (2)2.8975 (17)124 (2)
N8—H8A···O6iii0.862.042.7727 (16)143
N8—H8B···O2i0.862.423.2740 (17)175
N8—H8B···O3i0.862.503.1445 (17)132
C3—H3···O80.932.563.1944 (18)126
C18—H18···O10iii0.932.513.034 (2)116
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+3, y+2, z+1; (iii) x+1, y+1, z.
 

Acknowledgements

The authors acknowledge the SAIF, IIT, Madras for the data collection.

References

First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHamdouchi, C., de Blas, J., del Prado, M., Gruber, J., Heinz, B. A. & Vance, L. (1999). J. Med. Chem. 42, 50–59.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o2747.  CrossRef IUCr Journals Google Scholar
First citationRival, Y., Grassy, G. & Michel, G. (1992). Chem. Pharm. Bull. 40, 1170–1176.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSivakumar, P., Sudhahar, S., Gunasekaran, B., Israel, S. & Chakkaravarthi, G. (2016). IUCrData, 1, x160817.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds