organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-Amino-4-methyl­pyridin-1-ium 2-(4-nitro­phen­yl)acetate

aResearch and Development Centre, Bharathiar University, Coimbatore 641 046, India, bDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India, cResearch Scholar in Physics, Mother Teresa University, Kodaikanal 624 102, India, and dPost Graduate and Research Department of Physics, The American College, Madurai 625 002, India
*Correspondence e-mail: israel.samuel@gmail.com, chakkaravarthi_2005@yahoo.com

Edited by R. F. Baggio, Comisión Nacional de Energía Atómica, Argentina (Received 25 August 2016; accepted 9 September 2016; online 16 September 2016)

In the title mol­ecular salt, C6H9N2+·C8H6NO4, the cation is protonated at its pyridine N atom. In the crystal, the anion and cation are connected by weak N—H⋯O hydrogen bonds, generating an R22(8) ring motif. A pair of N—H⋯O hydrogen bonds and a C—H⋯O contact generate an R23(19) ring motif. In the crystal, adjacent anions and cations are linked by N—H⋯O hydrogen bonds into infinite chains along [001]. The components are further linked by weak C—H⋯O contacts and C—H⋯π inter­actions, forming a three-dimensional network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Pyridine derivatives show a wide range of biological activities such as anti-inflammatory (Rupert et al., 2003[Rupert, K. C., Henry, J. R., Dodd, J. H., Wadsworth, S. A., Cavender, D. E., Olini, G. C., Fahmy, B. & Siekierka, J. J. (2003). Bioorg. Med. Chem. Lett. 13, 347-350.]), anti­viral (Hamdouchi et al., 1999[Hamdouchi, C., de Blas, J., del Prado, M., Gruber, J., Heinz, B. A. & Vance, L. (1999). J. Med. Chem. 42, 50-59.]) and anti­bacterial (Rival et al., 1992[Rival, Y., Grassy, G. & Michel, G. (1992). Chem. Pharm. Bull. 40, 1170-1176.]). We herein report the synthesis and crystal structure of the title mol­ecular salt (Fig. 1[link]). The geometric parameters are agree well with those for similar reported structures (Sivakumar et al., 2016a[Sivakumar, P., Sudhahar, S., Israel, S. & Chakkaravarthi, G. (2016a). IUCrData, 1, x160747.],b[Sivakumar, P., Sudhahar, S., Gunasekaran, B., Israel, S. & Chakkaravarthi, G. (2016b). IUCrData, 1, x160817.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title mol­ecular salt, with atom labelling and 30% probability displacement ellipsoids.

The asymmetric unit (Fig. 1[link]) comprises a 2-amino-4-methyl­pyridin-1-ium cation and 2-(4-nitro­phen­yl)acetate anion. The cation is protonated at the N1 atom and the anion is deprotonated at the hydroxyl O3 atom. In the crystal, the anion and cation are connected by weak N1—H1A⋯O3 and N2—H2B⋯O4 hydrogen bonds, by generating an R22(8) ring-motif (Fig. 2[link]). The N2—H2B⋯O4 and N2—H2A⋯O3i hydrogen bonds and C12—H12⋯O1i contact generate an R23(19) ring motif (Fig. 2[link]).

[Figure 2]
Figure 2
A partial view of the crystal packing of the title mol­ecular salt, showing the ring motifs. Symmetry code: (i) x, 1 − y, −[{1\over 2}] + z.

In the crystal, adjacent anions and cations are linked by N2—H2A⋯O3i hydrogen bonds (Table 1[link]) into infinite chains along [00] . The components are further linked by weak C—H⋯O and C—H⋯π inter­actions (Table 1[link]), forming a three-dimensional network (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the N1/C1–C5 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O3 0.86 (1) 1.79 (2) 2.643 (5) 169 (5)
N2—H2B⋯O4 0.86 (1) 1.97 (2) 2.822 (6) 173 (4)
N2—H2A⋯O3i 0.86 (1) 2.03 (2) 2.885 (5) 174 (4)
C2—H2⋯O2ii 0.93 2.57 3.420 (6) 152
C6—H6C⋯O1iii 0.96 2.44 3.371 (6) 163
C9—H9⋯O4iv 0.93 2.50 3.328 (5) 149
C12—H12⋯O1i 0.93 2.59 3.249 (6) 128
C6—H6CCg2v 0.96 2.71 3.448 (4) 134
Symmetry codes: (i) [x, -y+1, z-{\script{1\over 2}}]; (ii) [x-1, -y+2, z-{\script{1\over 2}}]; (iii) x-1, y, z-1; (iv) [x, -y, z+{\script{1\over 2}}]; (v) x, y+1, z.
[Figure 3]
Figure 3
The crystal packing of the title mol­ecular salt viewed along b axis. The hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonds have been omitted for clarity.

Synthesis and crystallization

The title compound was synthesized by mixing 4-methyl­pyridine (0.93 g) and 4-nitro­phenyl­acetic acid (1.81 g) in (1:1) ratio in 10 ml acetone. This saturated solution was allowed to evaporate slowly at room temperature, yielding single crystals suitable for X-ray diffraction.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The reflections ([\overline{1}]00) and (100) were omitted during refinement due to probable shadowing by the beam stop.

Table 2
Experimental details

Crystal data
Chemical formula C6H9N2+·C8H6NO4
Mr 289.29
Crystal system, space group Monoclinic, Pc
Temperature (K) 295
a, b, c (Å) 13.856 (2), 4.5401 (7), 11.926 (2)
β (°) 111.173 (5)
V3) 699.6 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.30 × 0.25 × 0.20
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.604, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 8319, 2718, 1886
Rint 0.025
(sin θ/λ)max−1) 0.644
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.101, 1.03
No. of reflections 2718
No. of parameters 203
No. of restraints 5
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.22, −0.20
Computer programs: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155. ]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2016 (Sheldrick, 2015) and PLATON (Spek, 2009).

2-Amino-4-methylpyridin-1-ium 2-(4-nitrophenyl)acetate top
Crystal data top
C6H9N2+·C8H6NO4F(000) = 304
Mr = 289.29Dx = 1.373 Mg m3
Monoclinic, PcMo Kα radiation, λ = 0.71073 Å
a = 13.856 (2) ÅCell parameters from 3185 reflections
b = 4.5401 (7) Åθ = 3.2–27.2°
c = 11.926 (2) ŵ = 0.10 mm1
β = 111.173 (5)°T = 295 K
V = 699.6 (2) Å3Block, colourless
Z = 20.30 × 0.25 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1886 reflections with I > 2σ(I)
ω and φ scanRint = 0.025
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
θmax = 27.2°, θmin = 3.2°
Tmin = 0.604, Tmax = 0.746h = 1716
8319 measured reflectionsk = 55
2718 independent reflectionsl = 1515
Refinement top
Refinement on F25 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.046H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.0206P)2 + 0.4424P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2718 reflectionsΔρmax = 0.22 e Å3
203 parametersΔρmin = 0.20 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0033 (4)0.6796 (10)0.5037 (4)0.0498 (12)
H10.0112960.6072310.5727570.060*
C20.0719 (4)0.8768 (10)0.4360 (4)0.0506 (12)
H20.1256670.9440280.4585190.061*
C30.0605 (3)0.9792 (9)0.3303 (4)0.0437 (10)
C40.0203 (3)0.8827 (10)0.3020 (4)0.0425 (10)
H40.0289630.9534700.2331130.051*
C50.0910 (3)0.6783 (9)0.3748 (3)0.0383 (10)
C60.1387 (4)1.1939 (11)0.2509 (5)0.0598 (14)
H6A0.1063041.3149280.2085870.090*
H6B0.1644711.3161190.2995330.090*
H6C0.1950571.0871730.1940490.090*
C70.5945 (3)0.4240 (11)0.9353 (4)0.0405 (10)
C80.5118 (3)0.3703 (11)0.9693 (4)0.0501 (12)
H80.5092970.4511681.0398770.060*
C90.4324 (3)0.1949 (11)0.8978 (4)0.0479 (11)
H90.3764990.1545290.9209640.057*
C100.4348 (3)0.0787 (10)0.7924 (3)0.0408 (10)
C110.5190 (3)0.1367 (11)0.7598 (4)0.0482 (12)
H110.5212420.0585040.6887500.058*
C120.5998 (4)0.3095 (11)0.8314 (4)0.0512 (12)
H120.6566530.3472140.8095960.061*
C130.3445 (4)0.0941 (10)0.7099 (4)0.0518 (12)
H13A0.3079060.1867220.7561520.062*
H13B0.3691700.2477460.6704330.062*
C140.2711 (3)0.1111 (10)0.6155 (4)0.0444 (10)
N10.0765 (3)0.5834 (9)0.4748 (3)0.0404 (8)
N20.1693 (3)0.5673 (10)0.3502 (4)0.0552 (10)
N30.6791 (3)0.6122 (10)1.0109 (4)0.0572 (11)
O10.6716 (3)0.7190 (10)1.1007 (3)0.0894 (14)
O20.7543 (3)0.6494 (10)0.9824 (3)0.0849 (12)
O30.1947 (2)0.2097 (8)0.6360 (3)0.0552 (9)
O40.2937 (3)0.1761 (9)0.5275 (3)0.0723 (11)
H1A0.119 (3)0.455 (8)0.520 (3)0.060 (16)*
H2A0.181 (3)0.635 (9)0.289 (2)0.048 (12)*
H2B0.211 (3)0.452 (8)0.403 (3)0.046 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.061 (3)0.057 (3)0.046 (3)0.004 (2)0.036 (2)0.003 (2)
C20.051 (3)0.051 (3)0.058 (3)0.004 (2)0.031 (2)0.009 (2)
C30.050 (3)0.036 (2)0.045 (3)0.006 (2)0.017 (2)0.0051 (19)
C40.050 (3)0.042 (2)0.038 (2)0.006 (2)0.020 (2)0.000 (2)
C50.044 (3)0.041 (3)0.035 (2)0.007 (2)0.0198 (19)0.0056 (19)
C60.058 (3)0.052 (3)0.066 (3)0.001 (3)0.018 (3)0.003 (3)
C70.036 (2)0.045 (3)0.040 (2)0.004 (2)0.0129 (19)0.005 (2)
C80.049 (3)0.064 (3)0.044 (3)0.007 (3)0.025 (2)0.002 (2)
C90.040 (2)0.061 (3)0.051 (3)0.002 (2)0.026 (2)0.010 (2)
C100.039 (2)0.037 (2)0.046 (3)0.003 (2)0.016 (2)0.0096 (19)
C110.052 (3)0.055 (3)0.045 (3)0.001 (2)0.026 (2)0.003 (2)
C120.044 (3)0.065 (3)0.054 (3)0.003 (2)0.030 (2)0.001 (3)
C130.056 (3)0.040 (3)0.062 (3)0.004 (2)0.025 (2)0.001 (2)
C140.045 (3)0.044 (2)0.047 (3)0.005 (2)0.019 (2)0.008 (2)
N10.045 (2)0.045 (2)0.036 (2)0.0017 (18)0.0202 (18)0.0008 (17)
N20.055 (3)0.071 (3)0.049 (2)0.007 (2)0.031 (2)0.008 (2)
N30.050 (3)0.071 (3)0.050 (2)0.013 (2)0.017 (2)0.007 (2)
O10.079 (3)0.125 (4)0.071 (3)0.036 (3)0.035 (2)0.037 (3)
O20.058 (2)0.118 (3)0.087 (3)0.034 (2)0.035 (2)0.012 (2)
O30.053 (2)0.072 (2)0.0488 (18)0.0082 (17)0.0286 (16)0.0008 (16)
O40.074 (3)0.099 (3)0.058 (2)0.030 (2)0.041 (2)0.016 (2)
Geometric parameters (Å, º) top
C1—C21.342 (6)C8—H80.9300
C1—N11.345 (5)C9—C101.375 (6)
C1—H10.9300C9—H90.9300
C2—C31.405 (6)C10—C111.381 (5)
C2—H20.9300C10—C131.503 (6)
C3—C41.353 (6)C11—C121.382 (6)
C3—C61.510 (6)C11—H110.9300
C4—C51.400 (6)C12—H120.9300
C4—H40.9300C13—C141.531 (6)
C5—N21.321 (6)C13—H13A0.9700
C5—N11.350 (5)C13—H13B0.9700
C6—H6A0.9600C14—O41.234 (5)
C6—H6B0.9600C14—O31.253 (5)
C6—H6C0.9600N1—H1A0.862 (14)
C7—C81.368 (6)N2—H2A0.858 (13)
C7—C121.371 (6)N2—H2B0.860 (14)
C7—N31.467 (6)N3—O11.214 (5)
C8—C91.377 (6)N3—O21.219 (5)
C2—C1—N1122.1 (4)C8—C9—H9119.6
C2—C1—H1118.9C9—C10—C11119.1 (4)
N1—C1—H1118.9C9—C10—C13120.6 (4)
C1—C2—C3118.4 (4)C11—C10—C13120.2 (4)
C1—C2—H2120.8C10—C11—C12120.9 (4)
C3—C2—H2120.8C10—C11—H11119.6
C4—C3—C2119.2 (4)C12—C11—H11119.6
C4—C3—C6121.6 (4)C7—C12—C11118.5 (4)
C2—C3—C6119.3 (4)C7—C12—H12120.7
C3—C4—C5121.2 (4)C11—C12—H12120.7
C3—C4—H4119.4C10—C13—C14109.8 (4)
C5—C4—H4119.4C10—C13—H13A109.7
N2—C5—N1118.1 (4)C14—C13—H13A109.7
N2—C5—C4124.2 (4)C10—C13—H13B109.7
N1—C5—C4117.7 (4)C14—C13—H13B109.7
C3—C6—H6A109.5H13A—C13—H13B108.2
C3—C6—H6B109.5O4—C14—O3124.9 (4)
H6A—C6—H6B109.5O4—C14—C13117.8 (4)
C3—C6—H6C109.5O3—C14—C13117.2 (4)
H6A—C6—H6C109.5C1—N1—C5121.4 (4)
H6B—C6—H6C109.5C1—N1—H1A119 (3)
C8—C7—C12121.7 (4)C5—N1—H1A119 (3)
C8—C7—N3119.4 (4)C5—N2—H2A118 (3)
C12—C7—N3118.9 (4)C5—N2—H2B118 (3)
C7—C8—C9119.1 (4)H2A—N2—H2B123 (4)
C7—C8—H8120.4O1—N3—O2122.9 (5)
C9—C8—H8120.4O1—N3—C7118.1 (4)
C10—C9—C8120.7 (4)O2—N3—C7119.0 (4)
C10—C9—H9119.6
N1—C1—C2—C31.5 (7)C8—C7—C12—C110.3 (7)
C1—C2—C3—C41.8 (6)N3—C7—C12—C11178.9 (4)
C1—C2—C3—C6178.1 (4)C10—C11—C12—C70.4 (7)
C2—C3—C4—C51.5 (6)C9—C10—C13—C1492.7 (5)
C6—C3—C4—C5178.5 (4)C11—C10—C13—C1483.7 (5)
C3—C4—C5—N2177.5 (4)C10—C13—C14—O480.8 (5)
C3—C4—C5—N10.8 (6)C10—C13—C14—O396.4 (5)
C12—C7—C8—C90.5 (7)C2—C1—N1—C50.8 (7)
N3—C7—C8—C9179.6 (4)N2—C5—N1—C1178.0 (4)
C7—C8—C9—C101.1 (7)C4—C5—N1—C10.4 (6)
C8—C9—C10—C110.9 (7)C8—C7—N3—O11.3 (7)
C8—C9—C10—C13175.5 (4)C12—C7—N3—O1177.8 (5)
C9—C10—C11—C120.2 (7)C8—C7—N3—O2177.1 (5)
C13—C10—C11—C12176.3 (4)C12—C7—N3—O23.7 (7)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the N1/C1–C5 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1A···O30.86 (1)1.79 (2)2.643 (5)169 (5)
N2—H2B···O40.86 (1)1.97 (2)2.822 (6)173 (4)
N2—H2A···O3i0.86 (1)2.03 (2)2.885 (5)174 (4)
C2—H2···O2ii0.932.573.420 (6)152
C6—H6C···O1iii0.962.443.371 (6)163
C9—H9···O4iv0.932.503.328 (5)149
C12—H12···O1i0.932.593.249 (6)128
C6—H6C···Cg2v0.962.713.448 (4)134
Symmetry codes: (i) x, y+1, z1/2; (ii) x1, y+2, z1/2; (iii) x1, y, z1; (iv) x, y, z+1/2; (v) x, y+1, z.
 

Acknowledgements

The authors acknowledge the SAIF, IIT, Madras for the data collection.

References

First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHamdouchi, C., de Blas, J., del Prado, M., Gruber, J., Heinz, B. A. & Vance, L. (1999). J. Med. Chem. 42, 50–59.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRival, Y., Grassy, G. & Michel, G. (1992). Chem. Pharm. Bull. 40, 1170–1176.  CrossRef PubMed CAS Google Scholar
First citationRupert, K. C., Henry, J. R., Dodd, J. H., Wadsworth, S. A., Cavender, D. E., Olini, G. C., Fahmy, B. & Siekierka, J. J. (2003). Bioorg. Med. Chem. Lett. 13, 347–350.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSivakumar, P., Sudhahar, S., Gunasekaran, B., Israel, S. & Chakkaravarthi, G. (2016b). IUCrData, 1, x160817.  Google Scholar
First citationSivakumar, P., Sudhahar, S., Israel, S. & Chakkaravarthi, G. (2016a). IUCrData, 1, x160747.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.   Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds