organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1,1′-Bi­phenyl-2,2′,5,5′-tetra­carb­­oxy­lic acid

aInstitute of Molecular Science, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China, and bFenyang College, Shanxi Medical University, Fenyang, Shanxi 032200, People's Republic of China
*Correspondence e-mail: luliping@sxu.edu.cn

Edited by M. Zeller, Purdue University, USA (Received 30 July 2016; accepted 8 August 2016; online 12 August 2016)

In the title compound, C16H10O8 or H4bptc, the dihedral angle between the planes of the phenyl rings is 51.90 (4)°. The asymmetric unit contains one half-mol­ecule; complete mol­ecules are generated by a twofold rotation axis. In the crystal, O—H⋯O and C—H⋯O hydrogen-bonding generate a two-dimensional supra­molecular network. In addition, weak ππ inter­actions are also observed.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Polycarboxyl­ate ligands, as good candidates for the construction of coordination polymers (CPs), have attracted the inter­est of many researchers (Su et al., 2014[Su, F., Lu, L.-P., Feng, S.-S. & Zhu, M.-L. (2014). CrystEngComm, 16, 7990-7999.]; Tian et al., 2011[Tian, D., Pang, Y., Zhou, Y.-H., Guan, L. & Zhang, H. (2011). CrystEngComm, 13, 957-966.]). For example, the anion of 1,1′-biphenyl-2,2′,5,5′-tetra­carb­oxy­lic acid (H4bptc) can bridge multiple metal centres via a variety of bonding modes, providing an abundance of structural motifs (Sun et al., 2010[Sun, L.-X., Qi, Y., Wang, Y.-M., Che, Y.-X. & Zheng, J.-M. (2010). CrystEngComm, 12, 1540-1547.]; Jia et al., 2010[Jia, J., Shao, M., Jia, T., Zhu, S., Zhao, Y., Xing, F. & Li, M. (2010). CrystEngComm, 12, 1548-1561.]). As part of a study to design and attempt the assembly of coordination polymers employing H4bptc as an exo-multidentate ligand we reacted H4bptc with MnCl2 and half an equivalent of base under hydro­thermal conditions. However, no complex of MnII was formed, but instead crystals of H4bptc were obtained.

The mol­ecular structure is illustrated in Fig. 1[link]. The title compound crystallizes in the monoclinic space group C2/c. The asymmetric unit consists of half a mol­ecule, complete mol­ecules are generated by a twofold rotation axis. The phenyl ring has a maximum deviation of 0.0144 (12) Å for atom C5. The C7 and C8 atoms deviate from the mean plane of the ring to which they are attached by 0.1191 (7) and 0.0987 (8) Å, respectively. The carboxyl O atoms (O1, O2, O3 and O4) deviate by 0.6257 (9), −0.3566 (1), −0.0388 (1) and 0.3591 (2) Å, respectively, from the best plane of the phenyl ring. The dihedral angle between the planes of the phenyl rings is 51.90 (4)°, showing the mol­ecule to have a twisted conformation. In the compounds 1,1′-biphenyl-2,2′,4,4′-tetra­carb­oxy­lic acid (Bu et al., 2010[Bu, D., Zhang, A. & Zhao, D. (2010). Acta Cryst. E66, o2626.]), 1,1′-biphenyl-2,2′,3,3′-tetra­carb­oxy­lic acid (Holý et al., 2004[Holý, P., Sehnal, P., Tichý, M., Závada, J. & Císařová, I. (2004). Tetrahedron Asymmetry, 15, 3805-3810.]), and 1,1′-biphenyl-2,2′,6,6′-tetra­carb­oxy­lic acid (Holý et al., 1999[Holý, P., Závada, J., Císařová, I. & Podlaha, J. (1999). Angew. Chem. Int. Ed. 38, 381-383.]), which are similar to the title compound but substituted at the two 2-positions of the benzene rings, the rings are twisted by 71.63 (5), 88.68 (5) and 86.26 (6)°, respectively. In the isomers substituted at the 3-positions such as 1,1′-biphenyl-3,3′,4,4′-tetra­carb­oxy­lic acid (Li et al., 2009[Li, F., Wang, W.-W., Ji, X., Cao, C.-C. & Zhu, D.-Y. (2009). Acta Cryst. E65, o244.]) and 1,1′-biphenyl-3,3′,5,5′-tetra­carb­oxy­lic acid (Coles et al., 2002[Coles, S. J., Holmes, R., Hursthouse, M. B. & Price, D. J. (2002). Acta Cryst. E58, o626-o628.]), the dihedral angles of the biphenyl unit are 0 and 40.71 (8)°, respectively. This indicates that substitution at the 2-position impacts the planarity of the biphenyl unit. The steric hindering effect of a 2-substituent obviously plays a key factor in biphenyl planarity in the isomers of 1,1′-biphenyl-tetra­carb­oxy­lic acids.

[Figure 1]
Figure 1
View of the title mol­ecule with 30% probability displacement ellipsoids. [Symmetry code: (i) −x, y, [{1\over 2}] − z.]

In the crystal, the mol­ecules are connected through O—H⋯O and C—H⋯O hydrogen bonds (Table 1[link]) as well as ππ inter­actions, leading to the formation of a supra­molecular network. All O atoms participate in the hydrogen-bonded network. Individual mol­ecules are linked by strong O—H⋯O double hydrogen bonds into carb­oxy­lic acid dimers [R22(8) hydrogen-bond motif, Fig. 2[link]] which, if considered as tectons, suggest that the self-assembling properties of inter­actions result in a unilayered sheet with a supra­molecular R44(40) rhombus motif. From a topological point of view, the two-dimensional structure is a (4,4) network when the fused bi­phenyls are considered as nodes (Fig. 2[link]). The overall supra­molecular assembly also includes C—H⋯O hydrogen bonds (carb­oxy­lic acids in the position 5,5′-substituent at the biphen­yl) and other weak inter­actions (Table 1[link]). A supra­molecular chain with R22(16) rings is formed in the c-axis direction via the C6—H6⋯O3(x, −y, [{1\over 2}] + z) hydrogen-bond (Fig. 3[link]). ππii [symmetry code (ii) −x, −y, −z; centroid-to-centroid distance = 3.711 (1) Å] inter­actions between the C1–C6 rings strengthen the chains proceeding in this direction. On the other side of the phenyl ring, there is a COOH⋯π(−x,1 − y, −z) stacking inter­action (carb­oxy­lic acids in the 2,2′-position at the biphen­yl) with a C⋯centroid distance of 3.871 (1) Å (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O3i 0.93 2.52 3.438 (2) 168
O2—H2⋯O3ii 0.99 1.67 2.6615 (17) 176
O4—H4A⋯O1iii 0.96 1.70 2.6535 (16) 174
Symmetry codes: (i) [x, -y, z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iii) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].
[Figure 2]
Figure 2
The two-dimensional hydrogen-bonded network.
[Figure 3]
Figure 3
View down the c axis of the inter­penetrating corrugated sheets that comprise the crystal structure. [Symmetry codes: (i) x, −y, [{1\over 2}] + z; (ii) −x, −y, −z; (iii) −x, 1 − y, −z.]

Synthesis and crystallization

A mixture containing MnCl2·4H2O (0.2 mmol, 39.4 mg), H4bptc (0.2 mmol, 66.0 mg), KOH (0.2 mmol, 11.2 mg) and H2O (6 ml) was stirred for 30 min at room temperature. The reaction mixture was sealed in a Teflon-lined stainless steel vessel and then heated to 393 K for three days. The resulting solution was allowed to gradually cool to room temperature. Colorless block-shaped crystals were collected by filtration and washed with water.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C16H10O8
Mr 330.24
Crystal system, space group Monoclinic, C2/c
Temperature (K) 298
a, b, c (Å) 17.5105 (15), 7.7068 (7), 10.6885 (13)
β (°) 107.553 (1)
V3) 1375.3 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.13
Crystal size (mm) 0.22 × 0.19 × 0.15
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2000[Bruker (2000). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.679, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 3734, 1227, 979
Rint 0.023
(sin θ/λ)max−1) 0.596
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.099, 1.04
No. of reflections 1227
No. of parameters 113
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.18, −0.18
Computer programs: APEX2 and SAINT (Bruker, 2000[Bruker (2000). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

1,1'-Biphenyl-2,2',5,5'-tetracarboxylic acid top
Crystal data top
C16H10O8F(000) = 680
Mr = 330.24Dx = 1.595 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 17.5105 (15) ÅCell parameters from 4946 reflections
b = 7.7068 (7) Åθ = 2.0–28.7°
c = 10.6885 (13) ŵ = 0.13 mm1
β = 107.553 (1)°T = 298 K
V = 1375.3 (2) Å3Block, colorless
Z = 40.22 × 0.19 × 0.15 mm
Data collection top
Bruker APEXII CCD
diffractometer
979 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.023
φ and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 2020
Tmin = 0.679, Tmax = 0.746k = 96
3734 measured reflectionsl = 1212
1227 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.035 w = 1/[σ2(Fo2) + (0.0493P)2 + 0.7133P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.099(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.18 e Å3
1227 reflectionsΔρmin = 0.18 e Å3
113 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.00860 (9)0.2360 (2)0.18570 (15)0.0226 (4)
C20.04525 (9)0.2980 (2)0.06844 (15)0.0246 (4)
C30.02754 (9)0.2807 (2)0.04963 (16)0.0291 (4)
H30.06420.31890.12710.035*
C40.04383 (10)0.2077 (2)0.05290 (16)0.0289 (4)
H40.05530.19730.13200.035*
C50.09824 (9)0.1500 (2)0.06265 (16)0.0264 (4)
C60.07976 (9)0.1613 (2)0.17983 (16)0.0255 (4)
H60.11580.11800.25620.031*
C70.12042 (9)0.3912 (2)0.06627 (16)0.0279 (4)
C80.17699 (10)0.0806 (2)0.06039 (16)0.0300 (4)
O10.12872 (7)0.46968 (17)0.16061 (12)0.0367 (4)
O20.17566 (7)0.3840 (2)0.04713 (12)0.0498 (4)
H20.2235 (13)0.448 (3)0.0423 (7)0.075*
O30.19187 (7)0.04896 (19)0.04157 (12)0.0443 (4)
O40.22832 (7)0.0609 (2)0.17623 (12)0.0534 (5)
H4A0.2783 (14)0.021 (3)0.1674 (3)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0187 (8)0.0260 (8)0.0230 (8)0.0030 (6)0.0059 (6)0.0011 (6)
C20.0186 (8)0.0289 (9)0.0258 (8)0.0002 (7)0.0058 (7)0.0010 (7)
C30.0226 (8)0.0394 (10)0.0236 (9)0.0040 (7)0.0043 (7)0.0007 (7)
C40.0285 (8)0.0373 (10)0.0231 (8)0.0018 (8)0.0109 (7)0.0014 (7)
C50.0207 (8)0.0316 (10)0.0270 (9)0.0005 (7)0.0075 (7)0.0028 (7)
C60.0194 (8)0.0304 (9)0.0251 (9)0.0021 (7)0.0044 (6)0.0017 (7)
C70.0212 (8)0.0362 (10)0.0254 (9)0.0027 (7)0.0057 (7)0.0024 (7)
C80.0238 (9)0.0386 (10)0.0280 (9)0.0041 (7)0.0084 (8)0.0030 (8)
O10.0270 (6)0.0499 (8)0.0329 (7)0.0103 (6)0.0085 (6)0.0054 (6)
O20.0270 (7)0.0843 (11)0.0315 (8)0.0225 (7)0.0014 (6)0.0091 (7)
O30.0282 (7)0.0753 (10)0.0306 (7)0.0160 (7)0.0106 (6)0.0064 (7)
O40.0265 (7)0.1027 (13)0.0284 (7)0.0241 (7)0.0044 (6)0.0048 (7)
Geometric parameters (Å, º) top
C1—C61.391 (2)C5—C61.388 (2)
C1—C21.405 (2)C5—C81.486 (2)
C1—C1i1.493 (3)C6—H60.9300
C2—C31.394 (2)C7—O11.221 (2)
C2—C71.494 (2)C7—O21.3040 (19)
C3—C41.381 (2)C8—O31.219 (2)
C3—H30.9300C8—O41.301 (2)
C4—C51.386 (2)O2—H20.99 (3)
C4—H40.9300O4—H4A0.96 (3)
C6—C1—C2118.01 (14)C4—C5—C8119.52 (15)
C6—C1—C1i118.27 (16)C6—C5—C8120.50 (15)
C2—C1—C1i123.60 (15)C5—C6—C1121.52 (15)
C3—C2—C1120.16 (14)C5—C6—H6119.2
C3—C2—C7117.87 (14)C1—C6—H6119.2
C1—C2—C7121.91 (14)O1—C7—O2123.28 (15)
C4—C3—C2120.80 (15)O1—C7—C2123.30 (15)
C4—C3—H3119.6O2—C7—C2113.40 (14)
C2—C3—H3119.6O3—C8—O4123.70 (15)
C3—C4—C5119.49 (15)O3—C8—C5122.41 (16)
C3—C4—H4120.3O4—C8—C5113.87 (14)
C5—C4—H4120.3C7—O2—H2109.5
C4—C5—C6119.96 (14)C8—O4—H4A109.5
C6—C1—C2—C31.3 (2)C2—C1—C6—C50.9 (2)
C1i—C1—C2—C3174.80 (12)C1i—C1—C6—C5177.23 (13)
C6—C1—C2—C7175.63 (15)C3—C2—C7—O1151.99 (17)
C1i—C1—C2—C78.3 (2)C1—C2—C7—O125.0 (3)
C1—C2—C3—C41.9 (3)C3—C2—C7—O226.5 (2)
C7—C2—C3—C4175.08 (16)C1—C2—C7—O2156.53 (16)
C2—C3—C4—C50.4 (3)C4—C5—C8—O310.7 (3)
C3—C4—C5—C61.8 (3)C6—C5—C8—O3170.92 (17)
C3—C4—C5—C8176.53 (16)C4—C5—C8—O4167.89 (16)
C4—C5—C6—C12.5 (2)C6—C5—C8—O410.5 (2)
C8—C5—C6—C1175.82 (15)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O3ii0.932.523.438 (2)168
O2—H2···O3iii0.991.672.6615 (17)176
O4—H4A···O1iv0.961.702.6535 (16)174
Symmetry codes: (ii) x, y, z+1/2; (iii) x1/2, y+1/2, z; (iv) x+1/2, y1/2, z.
 

Acknowledgements

We gratefully acknowledge financial support by the Natural Science Foundation of China (grant No. 21571118) and thank Dr Feng Su of Shanxi University for his help with the data collection.

References

First citationBruker (2000). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBu, D., Zhang, A. & Zhao, D. (2010). Acta Cryst. E66, o2626.  CSD CrossRef IUCr Journals Google Scholar
First citationColes, S. J., Holmes, R., Hursthouse, M. B. & Price, D. J. (2002). Acta Cryst. E58, o626–o628.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHolý, P., Sehnal, P., Tichý, M., Závada, J. & Císařová, I. (2004). Tetrahedron Asymmetry, 15, 3805–3810.  Google Scholar
First citationHolý, P., Závada, J., Císařová, I. & Podlaha, J. (1999). Angew. Chem. Int. Ed. 38, 381–383.  Google Scholar
First citationJia, J., Shao, M., Jia, T., Zhu, S., Zhao, Y., Xing, F. & Li, M. (2010). CrystEngComm, 12, 1548–1561.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, F., Wang, W.-W., Ji, X., Cao, C.-C. & Zhu, D.-Y. (2009). Acta Cryst. E65, o244.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSu, F., Lu, L.-P., Feng, S.-S. & Zhu, M.-L. (2014). CrystEngComm, 16, 7990–7999.  Web of Science CSD CrossRef CAS Google Scholar
First citationSun, L.-X., Qi, Y., Wang, Y.-M., Che, Y.-X. & Zheng, J.-M. (2010). CrystEngComm, 12, 1540–1547.  Web of Science CrossRef CAS Google Scholar
First citationTian, D., Pang, Y., Zhou, Y.-H., Guan, L. & Zhang, H. (2011). CrystEngComm, 13, 957–966.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds