metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(Bi­phenyl-2,2′-di­yl)[1,3-bis­­(di­phenyl­phosphan­yl)propane-κ2P,P′]platinum(II)

aDepartment of Chemistry, Wichita State University, Wichita, KS 67260, USA, and bCrystallographic Laboratory, University of California, San Diego, LaJolla, CA 92093, USA
*Correspondence e-mail: paul.rillema@wichita.edu

Edited by M. Weil, Vienna University of Technology, Austria (Received 29 July 2016; accepted 8 August 2016; online 16 August 2016)

The C2P2 donor set in the title compound, [Pt(C12H8)(C27H26P2)], defines a distorted planar coordination environment about the PtII atom with small deviations from planarity. The bidentate nature of the biphenyl dianionic ligand results in a C—Pt—C bond angle of 79.94 (16)° and a P—Pt—P bond angle of 93.40 (4)°. The average Pt—C bond length is 2.083 (3) Å [range 2.081 (4)–2.085 (4) Å]; the average Pt—P bond length is 2.308 (8) Å [range 2.3030 (11)–2.3136 (11) Å].

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

We are inter­ested in preparing PtII complexes containing the biphenyl dianion (bph2−) and bidentate ligands due to their excited state properties (Rillema et al., 2015[Rillema, D. P., Stoyanov, S., Cruz, A., Nguyen, H., Moore, C., Huang, W., Siam, K., Jehan, A. & KomReddy, V. (2015). Dalton Trans. 44, 17075-17090.]) and determining their structures as a guide to design better photochromophores. The mol­ecular structures of Pt(bph)(di­imine) complexes revealed the bph2− and the di­imine ligands were not in the same plane as expected for square-planar PtII complexes, but were in an X or bowed configuration (Rillema et al., 2013a[Rillema, D. P., Cruz, A. J., Moore, C., Siam, K., Jehan, A., Base, D., Nguyen, T. & Huang, W. (2013a). Inorg. Chem. 52, 596-607.],b[Rillema, D. P., Cruz, A. J., Tasset, B. J., Moore, C., Siam, K. & Huang, W. (2013b). J. Mol. Struct. 1041, 82-91.]). Extensive ππ stacking was found for Pt(bph)(CO)2 (Chen et al., 1995[Chen, Y.-H., Merkert, J. W., Murtaza, Z., Woods, C. & Rillema, D. P. (1995). Inorg. Chim. Acta, 240, 41-47.]) but little ππ inter­action is expected for the title compound (Fig. 1[link]) due to its three-dimensional structure.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with atom labels and 50% probability displacement ellipsoids. H atoms have been omitted for clarity.

In the title compound, the C2P2 donor set approximates an isosceles trapezoid with a short distance defined by the C1—C2 distance of 2.676 (6) Å and the long distance defined by the P1—P2 distance of 3.360 (2) Å. The average length of the sides (C—P distance) is 3.198 (13) Å [range 3.188 (4)–3.207 (4) Å]. For the title compound, the average Pt—C bond length, the Pt—P bond length, the C—Pt—C bond angle and the P—Pt—P bond angle can be compared with a similar platinum(II) complex having a methyl group linking the two P atoms, viz. (2,2′-bi-o-phenyl­ene-di­yl)(bis­(di­phenyl­phosphan­yl)methane)­platinum(II) (DePriest et al., 2000[DePriest, J., Zheng, G. Y., Goswami, N., Eichhorn, D. M., Woods, C. & Rillema, D. P. (2000). Inorg. Chem. 39, 1955-1963.]) and a compound with two phenyl groups in place of the biphenyl dianionic ligand, viz. bis­(4-bromo-2-di­methyl­amino­phen­yl)[1,3-bis­(di­phenyl­phosphan­yl)propane-P:P]platinum(II), (Amijs et al., 2005[Amijs, C. H. M., van Klink, G. P. M., Lutz, M., Spek, A. L. & van Koten, G. (2005). Organometallics, 24, 2944-2958.]). The average Pt—C bond lengths are similar for the series: 2.084 (3), 2.05 (1) and 2.065 (4) Å, respectively. The average Pt—P bond lengths in the series are also similar: 2.314 (4), 2.305 (8) and 2.2998 (11) Å, respectively. However, the C—Pt—C and P—Pt—P bond angles are markedly affected by removing the bond between the two phenyl rings of biphenyl and substituting methyl for the propyl linkage of the bidentate diphosphine ligand. Replacement of the propyl group with the methyl group results in an 20% decrease in the average P—Pt—P angle of 92 (3)° [range 93.40 (4) to 89.69 (6)°] to 73.10 (9)°. The C—Pt—C angle increases 10% from an average of 80.4 (7)° [range 79.94 (16) to 80.9 (4)°] to 89.69 (6)° after replacement of the bidentate biphenyl ligand with two phenyl groups. In the crystal packing, apart from van der Waals forces (Fig. 2[link]), other noticeable inter­molecular inter­actions are not present.

[Figure 2]
Figure 2
Packing diagram showing C—H⋯C inter­actions within van der Waals radii for H and C.

Synthesis and crystallization

The compound was synthesized according to previously published procedures (DePriest et al., 2000[DePriest, J., Zheng, G. Y., Goswami, N., Eichhorn, D. M., Woods, C. & Rillema, D. P. (2000). Inorg. Chem. 39, 1955-1963.]) with substitution of 1,3-bis­(di­phenyl­phosphan­yl)propane for 1,1-bis­(di­phenyl­phosphan­yl)methane. X-ray quality crystals were obtained by recrystallization from methyl­ene chloride.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula [Pt(C12H8)(C27H26P2)]
Mr 759.69
Crystal system, space group Orthorhombic, P212121
Temperature (K) 100
a, b, c (Å) 10.4487 (8), 16.8817 (13), 17.3829 (14)
V3) 3066.2 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 4.71
Crystal size (mm) 0.16 × 0.14 × 0.13
 
Data collection
Diffractometer Bruker X8 APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.061, 0.092
No. of measured, independent and observed [I > 2σ(I)] reflections 34318, 5614, 5472
Rint 0.040
(sin θ/λ)max−1) 0.603
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.016, 0.035, 1.04
No. of reflections 5614
No. of parameters 379
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.34, −0.32
Absolute structure Flack x determined using 2339 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.015 (3)
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

(Biphenyl-2,2'-diyl)[1,3-bis(diphenylphosphanyl)propane-κ2P,P']platinum(II) top
Crystal data top
[Pt(C12H8)(C27H26P2)]Dx = 1.646 Mg m3
Mr = 759.69Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 9939 reflections
a = 10.4487 (8) Åθ = 2.3–25.4°
b = 16.8817 (13) ŵ = 4.71 mm1
c = 17.3829 (14) ÅT = 100 K
V = 3066.2 (4) Å3Block, yellow
Z = 40.16 × 0.14 × 0.13 mm
F(000) = 1504
Data collection top
Bruker X8 APEXII
diffractometer
5614 independent reflections
Radiation source: sealed tube, fine-focus5472 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 7.9 pixels mm-1θmax = 25.4°, θmin = 1.7°
ω and φ scansh = 1212
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 2020
Tmin = 0.061, Tmax = 0.092l = 2020
34318 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.016H-atom parameters constrained
wR(F2) = 0.035 w = 1/[σ2(Fo2) + (0.0167P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
5614 reflectionsΔρmax = 0.34 e Å3
379 parametersΔρmin = 0.32 e Å3
0 restraintsAbsolute structure: Flack x determined using 2339 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.015 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.43259 (2)0.45678 (2)0.59054 (2)0.01281 (5)
P10.63061 (10)0.50521 (7)0.55401 (7)0.0150 (2)
P20.32547 (10)0.52666 (6)0.49673 (6)0.0147 (2)
C10.5101 (4)0.3901 (2)0.6801 (2)0.0135 (9)
C20.2673 (4)0.4035 (2)0.6328 (2)0.0142 (9)
C30.6388 (4)0.3790 (3)0.7007 (3)0.0183 (10)
H30.70350.40000.66820.022*
C40.6753 (4)0.3386 (2)0.7667 (3)0.0195 (10)
H40.76350.33310.77880.023*
C50.5839 (4)0.3064 (2)0.8146 (2)0.0211 (10)
H50.60850.28010.86060.025*
C60.4554 (4)0.3126 (2)0.7949 (2)0.0192 (10)
H60.39200.28940.82690.023*
C70.4185 (4)0.3531 (2)0.7278 (2)0.0154 (9)
C80.2855 (4)0.3584 (2)0.7003 (2)0.0152 (9)
C90.1838 (4)0.3177 (3)0.7346 (3)0.0204 (10)
H90.19770.28920.78100.024*
C100.0630 (4)0.3183 (2)0.7018 (2)0.0215 (10)
H100.00540.28990.72500.026*
C110.0432 (4)0.3609 (2)0.6348 (3)0.0193 (10)
H110.03880.36090.61110.023*
C120.1438 (4)0.4041 (2)0.6018 (3)0.0168 (10)
H120.12750.43470.55700.020*
C130.6409 (4)0.5878 (3)0.4846 (3)0.0196 (11)
H13A0.62660.63820.51240.024*
H13B0.72860.58940.46300.024*
C140.5459 (4)0.5826 (2)0.4185 (3)0.0212 (10)
H14A0.54550.52800.39790.025*
H14B0.57330.61870.37670.025*
C150.4107 (4)0.6049 (2)0.4443 (3)0.0197 (10)
H15A0.36000.61940.39830.024*
H15B0.41600.65240.47760.024*
C160.7210 (4)0.5468 (3)0.6349 (2)0.0174 (9)
C170.8461 (4)0.5268 (2)0.6541 (3)0.0205 (10)
H170.89450.49370.62090.025*
C180.9004 (4)0.5550 (3)0.7215 (3)0.0267 (11)
H180.98530.54030.73480.032*
C190.8315 (5)0.6046 (3)0.7697 (3)0.0303 (12)
H190.86850.62340.81610.036*
C200.7076 (5)0.6268 (3)0.7495 (3)0.0285 (11)
H200.66080.66230.78130.034*
C210.6528 (4)0.5972 (3)0.6831 (3)0.0228 (11)
H210.56750.61150.67020.027*
C220.7279 (4)0.4291 (2)0.5079 (2)0.0158 (9)
C230.8501 (4)0.4447 (3)0.4783 (2)0.0191 (10)
H230.88510.49650.48260.023*
C240.9200 (4)0.3860 (3)0.4430 (2)0.0217 (10)
H241.00300.39720.42350.026*
C250.8689 (4)0.3100 (3)0.4359 (3)0.0238 (11)
H250.91800.26920.41250.029*
C260.7477 (4)0.2938 (3)0.4626 (2)0.0209 (10)
H260.71180.24260.45610.025*
C270.6780 (4)0.3534 (3)0.4995 (2)0.0188 (10)
H270.59520.34190.51910.023*
C280.2667 (3)0.4647 (2)0.4184 (2)0.0153 (8)
C290.2077 (4)0.4952 (3)0.3526 (2)0.0200 (10)
H290.19910.55090.34690.024*
C300.1613 (4)0.4452 (3)0.2954 (3)0.0233 (10)
H300.12010.46660.25140.028*
C310.1753 (4)0.3638 (3)0.3030 (3)0.0204 (10)
H310.14210.32940.26460.024*
C320.2375 (4)0.3327 (3)0.3663 (3)0.0200 (10)
H320.24920.27710.37050.024*
C330.2832 (4)0.3826 (2)0.4239 (2)0.0175 (10)
H330.32570.36080.46730.021*
C340.1939 (4)0.5878 (2)0.5334 (3)0.0166 (9)
C350.2107 (4)0.6179 (3)0.6078 (2)0.0198 (10)
H350.28250.60160.63740.024*
C360.1244 (4)0.6710 (3)0.6389 (3)0.0248 (11)
H360.13720.69060.68950.030*
C370.0195 (4)0.6956 (2)0.5968 (3)0.0212 (10)
H370.03920.73250.61820.025*
C380.0006 (4)0.6661 (3)0.5233 (3)0.0218 (11)
H380.07150.68280.49430.026*
C390.0867 (4)0.6121 (2)0.4918 (3)0.0193 (10)
H390.07240.59180.44160.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.01280 (7)0.01190 (7)0.01373 (8)0.00037 (7)0.00056 (7)0.00096 (7)
P10.0148 (5)0.0130 (6)0.0171 (6)0.0004 (5)0.0019 (5)0.0000 (5)
P20.0162 (5)0.0129 (6)0.0149 (6)0.0007 (4)0.0001 (4)0.0010 (4)
C10.019 (2)0.010 (2)0.012 (2)0.0009 (18)0.0017 (17)0.0028 (18)
C20.018 (2)0.010 (2)0.015 (2)0.0009 (17)0.0043 (18)0.0026 (18)
C30.021 (2)0.013 (2)0.021 (3)0.0029 (19)0.000 (2)0.002 (2)
C40.020 (2)0.020 (2)0.018 (3)0.0003 (19)0.006 (2)0.002 (2)
C50.031 (3)0.019 (2)0.013 (2)0.010 (2)0.006 (2)0.0004 (18)
C60.024 (3)0.015 (2)0.018 (2)0.0020 (19)0.0061 (19)0.0006 (18)
C70.021 (2)0.0110 (19)0.014 (2)0.0001 (19)0.001 (2)0.0041 (17)
C80.019 (2)0.010 (2)0.017 (2)0.0003 (18)0.0025 (19)0.0021 (18)
C90.025 (2)0.020 (2)0.017 (2)0.0038 (19)0.007 (2)0.004 (2)
C100.018 (2)0.018 (2)0.028 (3)0.001 (2)0.007 (2)0.0040 (19)
C110.012 (2)0.016 (2)0.030 (3)0.0025 (18)0.0025 (18)0.000 (2)
C120.016 (2)0.015 (2)0.019 (3)0.0033 (17)0.0005 (19)0.003 (2)
C130.019 (2)0.017 (2)0.023 (3)0.0009 (19)0.003 (2)0.007 (2)
C140.024 (2)0.019 (2)0.021 (3)0.0007 (18)0.005 (2)0.006 (2)
C150.022 (2)0.017 (2)0.020 (2)0.0008 (19)0.0014 (19)0.0056 (18)
C160.019 (2)0.013 (2)0.020 (2)0.003 (2)0.0027 (17)0.002 (2)
C170.025 (2)0.014 (3)0.023 (3)0.0014 (19)0.0022 (19)0.0012 (19)
C180.027 (2)0.025 (3)0.028 (3)0.008 (2)0.007 (2)0.007 (2)
C190.049 (3)0.022 (3)0.019 (3)0.010 (2)0.008 (2)0.002 (2)
C200.042 (3)0.023 (3)0.021 (3)0.002 (2)0.009 (2)0.003 (2)
C210.025 (2)0.021 (3)0.023 (3)0.000 (2)0.004 (2)0.004 (2)
C220.018 (2)0.018 (2)0.011 (2)0.0044 (18)0.0027 (18)0.0003 (18)
C230.023 (2)0.018 (2)0.017 (2)0.0049 (19)0.0002 (18)0.0005 (19)
C240.018 (2)0.029 (3)0.017 (2)0.002 (2)0.002 (2)0.0019 (19)
C250.027 (2)0.026 (3)0.019 (3)0.012 (2)0.0025 (19)0.002 (2)
C260.029 (2)0.016 (2)0.017 (3)0.004 (2)0.006 (2)0.0017 (19)
C270.022 (2)0.020 (2)0.015 (2)0.0008 (19)0.0013 (19)0.0033 (19)
C280.0176 (18)0.016 (2)0.012 (2)0.0003 (17)0.0033 (16)0.000 (2)
C290.027 (2)0.016 (2)0.018 (3)0.002 (2)0.001 (2)0.0005 (19)
C300.026 (2)0.028 (3)0.016 (2)0.003 (2)0.0008 (18)0.000 (2)
C310.023 (2)0.021 (2)0.017 (2)0.002 (2)0.0002 (19)0.006 (2)
C320.022 (2)0.014 (2)0.025 (3)0.0009 (19)0.002 (2)0.001 (2)
C330.018 (2)0.021 (2)0.015 (3)0.0046 (18)0.0026 (17)0.0031 (19)
C340.018 (2)0.013 (2)0.019 (2)0.0028 (18)0.0012 (19)0.0040 (19)
C350.020 (2)0.022 (2)0.017 (3)0.0032 (19)0.0039 (18)0.0029 (19)
C360.031 (3)0.025 (3)0.019 (3)0.003 (2)0.000 (2)0.005 (2)
C370.022 (2)0.015 (2)0.027 (3)0.0048 (17)0.005 (2)0.000 (2)
C380.021 (2)0.022 (3)0.023 (3)0.003 (2)0.002 (2)0.006 (2)
C390.020 (2)0.022 (2)0.016 (2)0.000 (2)0.0005 (19)0.0032 (18)
Geometric parameters (Å, º) top
Pt1—P12.3136 (11)C17—C181.386 (6)
Pt1—P22.3030 (11)C18—H180.9500
Pt1—C12.085 (4)C18—C191.386 (6)
Pt1—C22.081 (4)C19—H190.9500
P1—C131.848 (4)C19—C201.392 (7)
P1—C161.834 (4)C20—H200.9500
P1—C221.824 (4)C20—C211.382 (6)
P2—C151.836 (4)C21—H210.9500
P2—C281.824 (4)C22—C231.402 (6)
P2—C341.834 (4)C22—C271.388 (6)
C1—C31.404 (5)C23—H230.9500
C1—C71.412 (6)C23—C241.375 (6)
C2—C81.411 (6)C24—H240.9500
C2—C121.399 (5)C24—C251.395 (6)
C3—H30.9500C25—H250.9500
C3—C41.387 (6)C25—C261.375 (6)
C4—H40.9500C26—H260.9500
C4—C51.380 (6)C26—C271.398 (6)
C5—H50.9500C27—H270.9500
C5—C61.390 (6)C28—C291.397 (6)
C6—H60.9500C28—C331.400 (6)
C6—C71.405 (6)C29—H290.9500
C7—C81.471 (6)C29—C301.392 (6)
C8—C91.400 (6)C30—H300.9500
C9—H90.9500C30—C311.388 (6)
C9—C101.385 (6)C31—H310.9500
C10—H100.9500C31—C321.381 (6)
C10—C111.385 (6)C32—H320.9500
C11—H110.9500C32—C331.394 (6)
C11—C121.401 (6)C33—H330.9500
C12—H120.9500C34—C351.400 (6)
C13—H13A0.9900C34—C391.395 (6)
C13—H13B0.9900C35—H350.9500
C13—C141.520 (6)C35—C361.381 (6)
C14—H14A0.9900C36—H360.9500
C14—H14B0.9900C36—C371.381 (6)
C14—C151.529 (6)C37—H370.9500
C15—H15A0.9900C37—C381.386 (7)
C15—H15B0.9900C38—H380.9500
C16—C171.391 (6)C38—C391.393 (6)
C16—C211.391 (6)C39—H390.9500
C17—H170.9500
P2—Pt1—P193.40 (4)C17—C16—P1125.1 (3)
C1—Pt1—P192.76 (12)C17—C16—C21119.1 (4)
C1—Pt1—P2173.79 (12)C21—C16—P1115.6 (3)
C2—Pt1—P1172.62 (12)C16—C17—H17119.9
C2—Pt1—P293.91 (12)C18—C17—C16120.3 (4)
C2—Pt1—C179.94 (16)C18—C17—H17119.9
C13—P1—Pt1119.88 (15)C17—C18—H18119.8
C16—P1—Pt1112.65 (13)C17—C18—C19120.4 (4)
C16—P1—C13100.5 (2)C19—C18—H18119.8
C22—P1—Pt1111.73 (14)C18—C19—H19120.2
C22—P1—C13102.2 (2)C18—C19—C20119.6 (4)
C22—P1—C16108.64 (19)C20—C19—H19120.2
C15—P2—Pt1118.98 (14)C19—C20—H20120.1
C28—P2—Pt1113.49 (13)C21—C20—C19119.9 (4)
C28—P2—C15101.83 (19)C21—C20—H20120.1
C28—P2—C34109.30 (19)C16—C21—H21119.6
C34—P2—Pt1113.99 (15)C20—C21—C16120.8 (4)
C34—P2—C1597.55 (19)C20—C21—H21119.6
C3—C1—Pt1129.4 (3)C23—C22—P1122.5 (3)
C3—C1—C7116.1 (4)C27—C22—P1119.0 (3)
C7—C1—Pt1114.4 (3)C27—C22—C23118.5 (4)
C8—C2—Pt1114.5 (3)C22—C23—H23119.6
C12—C2—Pt1128.8 (3)C24—C23—C22120.8 (4)
C12—C2—C8116.6 (4)C24—C23—H23119.6
C1—C3—H3118.7C23—C24—H24120.0
C4—C3—C1122.7 (4)C23—C24—C25119.9 (4)
C4—C3—H3118.7C25—C24—H24120.0
C3—C4—H4119.9C24—C25—H25119.8
C5—C4—C3120.2 (4)C26—C25—C24120.4 (4)
C5—C4—H4119.9C26—C25—H25119.8
C4—C5—H5120.3C25—C26—H26120.3
C4—C5—C6119.3 (4)C25—C26—C27119.5 (4)
C6—C5—H5120.3C27—C26—H26120.3
C5—C6—H6119.8C22—C27—C26121.0 (4)
C5—C6—C7120.4 (4)C22—C27—H27119.5
C7—C6—H6119.8C26—C27—H27119.5
C1—C7—C8115.0 (4)C29—C28—P2123.2 (3)
C6—C7—C1121.1 (4)C29—C28—C33118.4 (4)
C6—C7—C8123.9 (4)C33—C28—P2118.4 (3)
C2—C8—C7115.5 (4)C28—C29—H29119.5
C9—C8—C2121.1 (4)C30—C29—C28120.9 (4)
C9—C8—C7123.3 (4)C30—C29—H29119.5
C8—C9—H9119.6C29—C30—H30120.1
C10—C9—C8120.9 (4)C31—C30—C29119.8 (4)
C10—C9—H9119.6C31—C30—H30120.1
C9—C10—H10120.4C30—C31—H31120.0
C9—C10—C11119.1 (4)C32—C31—C30120.1 (4)
C11—C10—H10120.4C32—C31—H31120.0
C10—C11—H11119.9C31—C32—H32119.9
C10—C11—C12120.1 (4)C31—C32—C33120.3 (4)
C12—C11—H11119.9C33—C32—H32119.9
C2—C12—C11122.1 (4)C28—C33—H33119.8
C2—C12—H12118.9C32—C33—C28120.5 (4)
C11—C12—H12118.9C32—C33—H33119.8
P1—C13—H13A108.7C35—C34—P2115.6 (3)
P1—C13—H13B108.7C39—C34—P2125.9 (3)
H13A—C13—H13B107.6C39—C34—C35118.2 (4)
C14—C13—P1114.3 (3)C34—C35—H35119.5
C14—C13—H13A108.7C36—C35—C34121.0 (4)
C14—C13—H13B108.7C36—C35—H35119.5
C13—C14—H14A109.3C35—C36—H36119.8
C13—C14—H14B109.3C35—C36—C37120.4 (4)
C13—C14—C15111.6 (4)C37—C36—H36119.8
H14A—C14—H14B108.0C36—C37—H37120.2
C15—C14—H14A109.3C36—C37—C38119.5 (4)
C15—C14—H14B109.3C38—C37—H37120.2
P2—C15—H15A108.6C37—C38—H38119.8
P2—C15—H15B108.6C37—C38—C39120.4 (4)
C14—C15—P2114.6 (3)C39—C38—H38119.8
C14—C15—H15A108.6C34—C39—H39119.8
C14—C15—H15B108.6C38—C39—C34120.4 (4)
H15A—C15—H15B107.6C38—C39—H39119.8
 

Acknowledgements

We are grateful for support from the National Science Foundation (EPSCoR), the Wichita State University Office of Research, and the Department of Energy..

References

First citationAmijs, C. H. M., van Klink, G. P. M., Lutz, M., Spek, A. L. & van Koten, G. (2005). Organometallics, 24, 2944–2958.  CSD CrossRef CAS Google Scholar
First citationBruker (2013). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Y.-H., Merkert, J. W., Murtaza, Z., Woods, C. & Rillema, D. P. (1995). Inorg. Chim. Acta, 240, 41–47.  CSD CrossRef CAS Google Scholar
First citationDePriest, J., Zheng, G. Y., Goswami, N., Eichhorn, D. M., Woods, C. & Rillema, D. P. (2000). Inorg. Chem. 39, 1955–1963.  CSD CrossRef PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRillema, D. P., Cruz, A. J., Moore, C., Siam, K., Jehan, A., Base, D., Nguyen, T. & Huang, W. (2013a). Inorg. Chem. 52, 596–607.  CSD CrossRef CAS PubMed Google Scholar
First citationRillema, D. P., Cruz, A. J., Tasset, B. J., Moore, C., Siam, K. & Huang, W. (2013b). J. Mol. Struct. 1041, 82–91.  CSD CrossRef CAS Google Scholar
First citationRillema, D. P., Stoyanov, S., Cruz, A., Nguyen, H., Moore, C., Huang, W., Siam, K., Jehan, A. & KomReddy, V. (2015). Dalton Trans. 44, 17075–17090.  CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds