metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(−)-Sparteinium tetra­chlorido­zincate monohydrate

aInstituto de Física, Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, 72570 Puebla, Pue., Mexico, and bLaboratorio de Síntesis de Complejos, Facultad de Ciencias Químicas, Universidad Autónoma de Puebla, A.P. 1067, 72001 Puebla, Pue., Mexico
*Correspondence e-mail: sylvain_bernes@hotmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 14 July 2016; accepted 31 July 2016; online 9 August 2016)

The title ionic compound, (C15H28N2)[ZnCl4]·H2O, is isostructural with the CuII analogue published previously [Lee et al. (2004[Lee, Y.-M., Park, S.-M., Kang, S. K., Kim, Y.-I. & Choi, S.-N. (2004). Bull. Korean Chem. Soc. 25, 823-828.]). Bull. Korean Chem. Soc. 25, 823–828; Jasiewicz et al. (2006[Jasiewicz, B., Boczoń, W., Muth, D., Warżajtis, B., Rychlewska, U., Andrzejewski, B. & Toliński, T. (2006). J. Mol. Struct. 794, 311-319.]). J. Mol. Struct. 794, 311–319]. The [ZnCl4]2− anion is, however, much more close to the tetra­hedral conformation than the [CuCl4]2− ion. In the tetra­chlorido­zincate anion, the Cl—Zn—Cl angles are in the range 103.57 (3)–116.81 (3)°.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The ortho­rhom­bic unit cell for the title compound (esp)2+(ZnCl4)2−·H2O (Fig. 1[link]) has parameters close to those reported for the copper analogue, (esp)2+(CuCl4)2−·H2O, and both complexes crystallize in the same chiral space group, P212121 [Lee et al., 2004[Lee, Y.-M., Park, S.-M., Kang, S. K., Kim, Y.-I. & Choi, S.-N. (2004). Bull. Korean Chem. Soc. 25, 823-828.]; Jasiewicz et al., 2006[Jasiewicz, B., Boczoń, W., Muth, D., Warżajtis, B., Rychlewska, U., Andrzejewski, B. & Toliński, T. (2006). J. Mol. Struct. 794, 311-319.]; CSD (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) refcodes CANVOD and CANVOD01, respectively]. The ligand esp is sparteine, also known as lupinidine, an alkaloid having four chiral centres and two protonable N sites. For the structure reported here, (–)-sparteine was used, which has the RSSS configuration (Hoppe & Hense, 1997[Hoppe, D. & Hense, T. (1997). Angew. Chem. Int. Ed. Engl. 36, 2282-2316.]). The same arrangement of ions and lattice water in the crystal is observed with ZnII and CuII. However, the tetra­chlorido­zincate ion is almost tetra­hedral, while the Cu analogue, (CuCl4)2−, with one electron less, is strongly distorted. For the structure reported here, the Cl—Zn—Cl angles are in the range 103.57 (3)–116.81 (3)°, while the Cl—Cu—Cl angles are in the range 97.9–135.3° (Lee et al., 2004[Lee, Y.-M., Park, S.-M., Kang, S. K., Kim, Y.-I. & Choi, S.-N. (2004). Bull. Korean Chem. Soc. 25, 823-828.]) or 97.8–135.3° (Jasiewicz et al., 2006[Jasiewicz, B., Boczoń, W., Muth, D., Warżajtis, B., Rychlewska, U., Andrzejewski, B. & Toliński, T. (2006). J. Mol. Struct. 794, 311-319.]). This difference may be qu­anti­tatively estimated using the τ4′ parameter defined for four-coordinate atoms (Okuniewski et al., 2015[Okuniewski, A., Rosiak, D., Chojnacki, J. & Becker, B. (2015). Polyhedron, 90, 47-57.]; extreme values for τ4′ are 0 for a square planar and 1 for a tetra­hedral conformation). In the title complex, τ4′ = 0.92 for (ZnCl4)2−, while in the case of CANVOD and CANVOD01, τ4′ = 0.69 for (CuCl4)2−.

[Figure 1]
Figure 1
The structures of the molecular entities of the title compound, with displacement ellipsoids for non-H atoms drawn at the 30% probability level. The choice for the asymmetric unit, as well as the labelling scheme (including H atoms), are the same as for CANVOD (Lee et al., 2004[Lee, Y.-M., Park, S.-M., Kang, S. K., Kim, Y.-I. & Choi, S.-N. (2004). Bull. Korean Chem. Soc. 25, 823-828.]).

With CuII, the isotypic complex was synthesized with (CuBr4)2− (Lee et al., 2004[Lee, Y.-M., Park, S.-M., Kang, S. K., Kim, Y.-I. & Choi, S.-N. (2004). Bull. Korean Chem. Soc. 25, 823-828.]). The last (–)-sparteinium salt for which a crystal structure has been reported was also obtained as an hydrate, with a complex heteropolyoxidometalate anion (Streb et al., 2007[Streb, C., Long, D.-L. & Cronin, L. (2007). Chem. Commun. pp. 471-473.]). The dication of the α-isomer of sparteine has also been characterized, with (CuCl4)2− or (CuBr4)2−, both crystallized as monohydrate species (Jasiewicz et al., 2006[Jasiewicz, B., Boczoń, W., Muth, D., Warżajtis, B., Rychlewska, U., Andrzejewski, B. & Toliński, T. (2006). J. Mol. Struct. 794, 311-319.]).

Regardless of the (MX4)2− dianion used with (esp)2+, the inclusion of a water mol­ecule in the lattice seems to be a stabilizing factor for the compound. For the title compound, this mol­ecule behaves as acceptor and donor for hydrogen bonding (Table 1[link], entries 2–5). The crystal cohesion is completed with an N—H⋯Cl contact linking cations and anions (Table 1[link], entry 1; Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl1i 0.98 2.31 3.279 (2) 170
N2—H2⋯O1ii 0.98 1.83 2.798 (3) 168
O1—H30⋯Cl2i 0.85 (1) 2.71 (4) 3.355 (3) 133 (4)
O1—H30⋯Cl3i 0.85 (1) 2.76 (3) 3.473 (3) 143 (4)
O1—H29⋯Cl1iii 0.86 (1) 2.42 (1) 3.257 (3) 167 (4)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x, y+1, z.
[Figure 2]
Figure 2
Part of the crystal structure, showing hydrogen bonds (dashed lines) and omitting H atoms not involved in hydrogen bonding. Hydrogen bonds are labelled (1)–(5), which correspond to entries 1–5 in Table 1[link].

Synthesis and crystallization

The compound was obtained as a low-yield by-product during the direct synthesis of the ZnII coordination complex [Zn(esp)Cl(PhCOO)], for which the crystal structure has been reported (Alcántara-Flores et al., 2009[Alcántara-Flores, J. L., Arias-López, N., Bernès, S., Gutiérrez, R. & Reyes Ortega, Y. (2009). Acta Cryst. E65, m1142-m1143.]). The synthesis of this complex was carried out using equimolar amounts of zinc powder and (–)-sparteine, an excess of benzoyl chloride, and DMSO. The mixture was stirred at 338 K for 8 h, cooled, and filtered. In this kind of reaction, the oxidative dissolution of zerovalent metals M0 in presence of an acyl halide has been shown to afford small qu­anti­ties of (MX4)2−, and water is provided by DMSO (Garnovskii et al., 1995[Garnovskii, A. D., Kharisov, B. I., Gojon-Zorrilla, G. & Garnovskii, D. A. (1995). Russ. Chem. Rev. 64, 201-221.]).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The structure was refined starting from the atomic coordinates reported for CANVOD (Lee et al., 2004[Lee, Y.-M., Park, S.-M., Kang, S. K., Kim, Y.-I. & Choi, S.-N. (2004). Bull. Korean Chem. Soc. 25, 823-828.]), after substituting the Cu site by a Zn site.

Table 2
Experimental details

Crystal data
Chemical formula (C15H28N2)[ZnCl4]·H2O
Mr 461.58
Crystal system, space group Orthorhombic, P212121
Temperature (K) 297
a, b, c (Å) 8.4549 (6), 14.7691 (10), 16.3607 (9)
V3) 2043.0 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.73
Crystal size (mm) 0.5 × 0.5 × 0.5
 
Data collection
Diffractometer Bruker P4
Absorption correction ψ scan (XSCANS; Bruker, 1997[Bruker (1997). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.210, 0.277
No. of measured, independent and observed [I > 2σ(I)] reflections 4207, 3989, 3673
Rint 0.017
(sin θ/λ)max−1) 0.703
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.068, 1.05
No. of reflections 3989
No. of parameters 215
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.26, −0.27
Absolute structure Flack x determined using 593 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.004 (11)
Computer programs: XSCANS (Bruker, 1997[Bruker (1997). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Structural data


Computing details top

Data collection: XSCANS (Bruker, 1997); cell refinement: XSCANS (Bruker, 1997); data reduction: XSCANS (Bruker, 1997); program(s) used to solve structure: coordinates taken from an isostructural compound; program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

(-)-7,15-Diazatetracyclo[7.7.1.02,7.010,15]heptadecane-7,15-diium tetrachloridozincate monohydrate top
Crystal data top
(C15H28N2)[ZnCl4]·H2ODx = 1.501 Mg m3
Mr = 461.58Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 65 reflections
a = 8.4549 (6) Åθ = 4.6–14.0°
b = 14.7691 (10) ŵ = 1.73 mm1
c = 16.3607 (9) ÅT = 297 K
V = 2043.0 (2) Å3Prism, pale_yellow
Z = 40.5 × 0.5 × 0.5 mm
F(000) = 960
Data collection top
Bruker P4
diffractometer
3673 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.017
Graphite monochromatorθmax = 30.0°, θmin = 1.9°
2θ/ω scansh = 111
Absorption correction: ψ scan
(XSCANS; Bruker, 1997)
k = 201
Tmin = 0.210, Tmax = 0.277l = 123
4207 measured reflections3 standard reflections every 97 reflections
3989 independent reflections intensity decay: 1.5%
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.027 w = 1/[σ2(Fo2) + (0.0309P)2 + 0.3509P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.068(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.26 e Å3
3989 reflectionsΔρmin = 0.27 e Å3
215 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
3 restraintsExtinction coefficient: 0.0095 (6)
0 constraintsAbsolute structure: Flack x determined using 593 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: isomorphous structure methodsAbsolute structure parameter: 0.004 (11)
Secondary atom site location: difference Fourier map
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.47336 (4)0.00375 (2)0.13525 (2)0.03925 (8)
Cl10.43251 (8)0.14733 (4)0.17192 (4)0.04092 (14)
Cl20.60888 (9)0.06123 (4)0.24235 (4)0.04872 (16)
Cl30.23318 (10)0.07286 (6)0.13219 (6)0.0611 (2)
Cl40.59037 (10)0.01131 (6)0.01301 (4)0.0581 (2)
N10.7771 (3)0.39420 (14)0.16364 (12)0.0352 (4)
H10.72350.37560.21400.042*
N21.0034 (3)0.25994 (14)0.31415 (12)0.0378 (4)
H21.11430.24200.30780.045*
C10.6597 (4)0.44897 (19)0.11347 (17)0.0485 (7)
H30.63280.50410.14260.058*
H40.70760.46580.06180.058*
C20.5127 (4)0.3951 (3)0.0979 (2)0.0611 (8)
H50.44150.42990.06360.073*
H60.45950.38320.14930.073*
C30.5513 (5)0.3052 (2)0.05581 (19)0.0605 (9)
H70.45610.26890.05190.073*
H80.58900.31690.00080.073*
C40.6767 (4)0.25307 (19)0.10303 (17)0.0514 (7)
H90.63310.23410.15510.062*
H100.70500.19910.07260.062*
C50.8241 (4)0.30901 (16)0.11801 (14)0.0388 (5)
H110.86440.32780.06450.047*
C60.9576 (4)0.25900 (17)0.16147 (15)0.0403 (5)
H120.99000.20870.12620.048*
C71.0478 (3)0.39856 (18)0.22780 (15)0.0418 (5)
H131.13810.43920.23550.050*
C80.9460 (4)0.2225 (2)0.39410 (16)0.0497 (7)
H140.95330.15700.39310.060*
H150.83580.23880.40180.060*
C91.0428 (5)0.2589 (3)0.46439 (18)0.0661 (9)
H161.15020.23630.46020.079*
H170.99860.23730.51550.079*
C101.0455 (5)0.3613 (3)0.46488 (18)0.0653 (9)
H181.11690.38240.50720.078*
H190.94050.38400.47730.078*
C111.0988 (4)0.3981 (2)0.38265 (17)0.0531 (7)
H201.09290.46370.38340.064*
H211.20810.38120.37330.064*
C120.9973 (3)0.36208 (16)0.31331 (15)0.0374 (5)
H220.88780.38070.32330.045*
C130.9161 (3)0.45208 (16)0.18746 (15)0.0415 (6)
H230.88060.49890.22470.050*
H240.95750.48160.13900.050*
C140.9123 (3)0.21852 (17)0.24551 (15)0.0411 (5)
H250.80020.22780.25490.049*
H260.93160.15380.24470.049*
C151.0995 (3)0.3218 (2)0.17079 (18)0.0481 (6)
H271.13090.34580.11800.058*
H281.18850.28930.19410.058*
O10.6895 (3)0.68939 (18)0.1878 (2)0.0692 (7)
H290.615 (4)0.728 (3)0.191 (3)0.104*
H300.663 (6)0.652 (2)0.225 (2)0.104*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.04187 (15)0.03891 (14)0.03698 (13)0.00235 (14)0.00004 (12)0.00472 (12)
Cl10.0427 (3)0.0356 (2)0.0444 (3)0.0003 (2)0.0092 (3)0.0001 (2)
Cl20.0510 (4)0.0450 (3)0.0501 (3)0.0082 (3)0.0069 (3)0.0003 (3)
Cl30.0533 (4)0.0619 (4)0.0682 (4)0.0224 (4)0.0027 (4)0.0087 (4)
Cl40.0641 (4)0.0739 (5)0.0364 (3)0.0058 (4)0.0041 (3)0.0145 (3)
N10.0422 (10)0.0339 (9)0.0295 (8)0.0015 (9)0.0028 (9)0.0006 (7)
N20.0337 (11)0.0444 (10)0.0353 (9)0.0008 (9)0.0005 (9)0.0061 (8)
C10.0596 (17)0.0436 (13)0.0423 (13)0.0089 (14)0.0058 (13)0.0032 (11)
C20.0538 (18)0.077 (2)0.0529 (16)0.0031 (18)0.0186 (16)0.0067 (15)
C30.072 (2)0.0652 (18)0.0442 (13)0.0149 (18)0.0240 (16)0.0035 (13)
C40.070 (2)0.0438 (13)0.0408 (12)0.0132 (14)0.0098 (14)0.0037 (11)
C50.0534 (15)0.0347 (11)0.0284 (10)0.0007 (11)0.0024 (10)0.0019 (8)
C60.0469 (14)0.0394 (11)0.0346 (10)0.0054 (12)0.0081 (11)0.0020 (9)
C70.0362 (12)0.0465 (12)0.0429 (12)0.0138 (11)0.0015 (11)0.0050 (10)
C80.0524 (17)0.0590 (15)0.0376 (11)0.0026 (15)0.0018 (13)0.0153 (11)
C90.070 (2)0.087 (2)0.0411 (14)0.006 (2)0.0077 (16)0.0119 (15)
C100.069 (2)0.086 (2)0.0410 (14)0.002 (2)0.0115 (16)0.0094 (14)
C110.0483 (16)0.0615 (16)0.0497 (15)0.0074 (15)0.0099 (13)0.0073 (13)
C120.0326 (12)0.0416 (11)0.0379 (11)0.0026 (10)0.0022 (10)0.0013 (9)
C130.0505 (14)0.0336 (10)0.0405 (12)0.0108 (11)0.0020 (12)0.0034 (9)
C140.0476 (14)0.0364 (11)0.0392 (12)0.0018 (11)0.0011 (12)0.0014 (9)
C150.0380 (13)0.0614 (16)0.0448 (13)0.0011 (13)0.0136 (12)0.0105 (13)
O10.0514 (13)0.0620 (14)0.0942 (19)0.0091 (11)0.0106 (15)0.0043 (14)
Geometric parameters (Å, º) top
Zn1—Cl42.2341 (7)C6—C141.547 (3)
Zn1—Cl22.2592 (7)C6—H120.9800
Zn1—Cl32.2734 (8)C7—C131.516 (4)
Zn1—Cl12.3362 (7)C7—C151.532 (4)
N1—C131.505 (3)C7—C121.559 (3)
N1—C51.516 (3)C7—H130.9800
N1—C11.521 (3)C8—C91.511 (5)
N1—H10.9800C8—H140.9700
N2—C141.493 (3)C8—H150.9700
N2—C81.501 (3)C9—C101.513 (5)
N2—C121.509 (3)C9—H160.9700
N2—H20.9800C9—H170.9700
C1—C21.498 (5)C10—C111.519 (4)
C1—H30.9700C10—H180.9700
C1—H40.9700C10—H190.9700
C2—C31.530 (5)C11—C121.518 (4)
C2—H50.9700C11—H200.9700
C2—H60.9700C11—H210.9700
C3—C41.521 (5)C12—H220.9800
C3—H70.9700C13—H230.9700
C3—H80.9700C13—H240.9700
C4—C51.515 (4)C14—H250.9700
C4—H90.9700C14—H260.9700
C4—H100.9700C15—H270.9700
C5—C61.525 (4)C15—H280.9700
C5—H110.9800O1—H290.855 (11)
C6—C151.524 (4)O1—H300.851 (11)
Cl4—Zn1—Cl2116.81 (3)C13—C7—C12111.7 (2)
Cl4—Zn1—Cl3110.69 (3)C15—C7—C12111.6 (2)
Cl2—Zn1—Cl3107.54 (3)C13—C7—H13108.0
Cl4—Zn1—Cl1110.06 (3)C15—C7—H13108.0
Cl2—Zn1—Cl1103.57 (3)C12—C7—H13108.0
Cl3—Zn1—Cl1107.60 (3)N2—C8—C9110.9 (3)
C13—N1—C5113.2 (2)N2—C8—H14109.5
C13—N1—C1110.3 (2)C9—C8—H14109.5
C5—N1—C1110.28 (19)N2—C8—H15109.5
C13—N1—H1107.6C9—C8—H15109.5
C5—N1—H1107.6H14—C8—H15108.0
C1—N1—H1107.6C8—C9—C10111.6 (3)
C14—N2—C8109.7 (2)C8—C9—H16109.3
C14—N2—C12112.65 (19)C10—C9—H16109.3
C8—N2—C12111.4 (2)C8—C9—H17109.3
C14—N2—H2107.6C10—C9—H17109.3
C8—N2—H2107.6H16—C9—H17108.0
C12—N2—H2107.6C9—C10—C11110.9 (3)
C2—C1—N1110.5 (2)C9—C10—H18109.5
C2—C1—H3109.5C11—C10—H18109.5
N1—C1—H3109.5C9—C10—H19109.5
C2—C1—H4109.5C11—C10—H19109.5
N1—C1—H4109.5H18—C10—H19108.0
H3—C1—H4108.1C12—C11—C10111.7 (3)
C1—C2—C3111.1 (3)C12—C11—H20109.3
C1—C2—H5109.4C10—C11—H20109.3
C3—C2—H5109.4C12—C11—H21109.3
C1—C2—H6109.4C10—C11—H21109.3
C3—C2—H6109.4H20—C11—H21107.9
H5—C2—H6108.0N2—C12—C11108.9 (2)
C4—C3—C2111.1 (2)N2—C12—C7110.1 (2)
C4—C3—H7109.4C11—C12—C7113.3 (2)
C2—C3—H7109.4N2—C12—H22108.1
C4—C3—H8109.4C11—C12—H22108.1
C2—C3—H8109.4C7—C12—H22108.1
H7—C3—H8108.0N1—C13—C7112.95 (19)
C5—C4—C3112.3 (2)N1—C13—H23109.0
C5—C4—H9109.1C7—C13—H23109.0
C3—C4—H9109.1N1—C13—H24109.0
C5—C4—H10109.1C7—C13—H24109.0
C3—C4—H10109.1H23—C13—H24107.8
H9—C4—H10107.9N2—C14—C6112.5 (2)
C4—C5—N1108.5 (2)N2—C14—H25109.1
C4—C5—C6114.8 (2)C6—C14—H25109.1
N1—C5—C6111.49 (19)N2—C14—H26109.1
C4—C5—H11107.2C6—C14—H26109.1
N1—C5—H11107.2H25—C14—H26107.8
C6—C5—H11107.2C6—C15—C7106.6 (2)
C15—C6—C5109.6 (2)C6—C15—H27110.4
C15—C6—C14109.9 (2)C7—C15—H27110.4
C5—C6—C14114.7 (2)C6—C15—H28110.4
C15—C6—H12107.4C7—C15—H28110.4
C5—C6—H12107.4H27—C15—H28108.6
C14—C6—H12107.4H29—O1—H30102 (2)
C13—C7—C15109.3 (2)
C13—N1—C1—C2173.4 (2)C8—N2—C12—C1158.7 (3)
C5—N1—C1—C260.8 (3)C14—N2—C12—C752.7 (3)
N1—C1—C2—C356.3 (3)C8—N2—C12—C7176.5 (2)
C1—C2—C3—C452.9 (4)C10—C11—C12—N257.3 (3)
C2—C3—C4—C554.1 (4)C10—C11—C12—C7179.8 (3)
C3—C4—C5—N157.4 (3)C13—C7—C12—N2119.0 (2)
C3—C4—C5—C6177.1 (2)C15—C7—C12—N23.8 (3)
C13—N1—C5—C4175.8 (2)C13—C7—C12—C11118.8 (3)
C1—N1—C5—C460.1 (3)C15—C7—C12—C11118.5 (3)
C13—N1—C5—C648.4 (3)C5—N1—C13—C748.2 (3)
C1—N1—C5—C6172.5 (2)C1—N1—C13—C7172.3 (2)
C4—C5—C6—C15178.6 (2)C15—C7—C13—N156.2 (3)
N1—C5—C6—C1557.6 (3)C12—C7—C13—N167.9 (3)
C4—C5—C6—C1457.2 (3)C8—N2—C14—C6176.1 (2)
N1—C5—C6—C1466.6 (3)C12—N2—C14—C651.3 (3)
C14—N2—C8—C9176.5 (3)C15—C6—C14—N27.5 (3)
C12—N2—C8—C958.0 (3)C5—C6—C14—N2116.5 (3)
N2—C8—C9—C1054.9 (4)C5—C6—C15—C765.0 (3)
C8—C9—C10—C1153.4 (5)C14—C6—C15—C762.0 (3)
C9—C10—C11—C1255.3 (4)C13—C7—C15—C663.8 (3)
C14—N2—C12—C11177.5 (2)C12—C7—C15—C660.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl1i0.982.313.279 (2)170
N2—H2···O1ii0.981.832.798 (3)168
O1—H30···Cl2i0.85 (1)2.71 (4)3.355 (3)133 (4)
O1—H30···Cl3i0.85 (1)2.76 (3)3.473 (3)143 (4)
O1—H29···Cl1iii0.86 (1)2.42 (1)3.257 (3)167 (4)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+2, y1/2, z+1/2; (iii) x, y+1, z.
 

Acknowledgements

SB acknowledges support by Instituto de Física Luis Rivera Terrazas (Puebla, Mexico).

References

First citationAlcántara-Flores, J. L., Arias-López, N., Bernès, S., Gutiérrez, R. & Reyes Ortega, Y. (2009). Acta Cryst. E65, m1142–m1143.  CSD CrossRef IUCr Journals Google Scholar
First citationBruker (1997). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGarnovskii, A. D., Kharisov, B. I., Gojon-Zorrilla, G. & Garnovskii, D. A. (1995). Russ. Chem. Rev. 64, 201–221.  CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHoppe, D. & Hense, T. (1997). Angew. Chem. Int. Ed. Engl. 36, 2282–2316.  CrossRef CAS Google Scholar
First citationJasiewicz, B., Boczoń, W., Muth, D., Warżajtis, B., Rychlewska, U., Andrzejewski, B. & Toliński, T. (2006). J. Mol. Struct. 794, 311–319.  CSD CrossRef CAS Google Scholar
First citationLee, Y.-M., Park, S.-M., Kang, S. K., Kim, Y.-I. & Choi, S.-N. (2004). Bull. Korean Chem. Soc. 25, 823–828.  CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOkuniewski, A., Rosiak, D., Chojnacki, J. & Becker, B. (2015). Polyhedron, 90, 47–57.  Web of Science CSD CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStreb, C., Long, D.-L. & Cronin, L. (2007). Chem. Commun. pp. 471–473.  CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds