organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

6-Methyl-7H-1,2,4-triazolo[4,3-b][1,2,4]triazepin-8(9H)-thione

aLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétences Pharmacochimie, Mohammed V University in Rabat, BP 1014 Avenue Ibn Batouta, Rabat, Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: y_elbakri@yahoo.com

Edited by E. R. T. Tiekink, Sunway University, Malaysia (Received 20 July 2016; accepted 29 July 2016; online 2 August 2016)

In the mol­ecule of the title compound, C6H7N5S, the triazole ring is planar, while the triazepine ring displays a boat conformation. The dihedral angle between the mean plane through the triazole and triazepine rings is 18.48 (8)°. In the crystal, mol­ecules are linked into centrosymmetric dimers by N—H⋯N hydrogen bonds via eight-membered {⋯HNCN}2 synthons. Supra­molecular layers in the ab plane are sustained by C—H⋯N and ππ inter­actions [inter-centroid separation between triazole rings = 3.2880 (16) Å]. Connections along the c axis occur between S atoms [S⋯S = 3.5972 (16) Å].

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Triazolotriazepine derivatives have been used as potent inhibitors of bone resorption (Chikazu et al., 2000[Chikazu, D., Shindo, M., Iwasaka, T., Katagiri, M., Manabe, N., Takato, T., Nakamura, K. & Kawaguchi, H. (2000). J. Bone Miner. Res. 15, 674-682.]). They also exhibit anti-fungal activity (Gupta et al., 2011[Gupta, M., Paul, S. & Gupta, R. (2011). Eur. J. Med. Chem. 46, 631-635.]). In view of the potential biological activity of fused azepines (Dabholkar & More, 2004[Dabholkar, V. V. & More, G. D. (2004). Indian J. Chem. Sect. B, 43, 682-684.]; Sewell & Hawking, 1950[Sewell, P. & Hawking, F. (1950). Brit. J. Pharmacol. 5, 239-260.]; Acheson & Taylor, 1956[Acheson, R. M. & Taylor, N. F. (1956). J. Chem. Soc. pp. 4727-4731.]) and as part of our inter­est in the synthesis of new heterocyclic systems containing triazole rings and triazepine (Essassi et al., 1976[Essassi, E. M., Lavergne, J. P. & Viallefont, P. (1976). J. Heterocycl. Chem. 13, 885-887.], 1977[Essassi, E. M., Lavergne, J. P. & Viallffont, P. (1977). Tetrahedron, 33, 2807-2812.]; Gupta, 2007[Gupta, M. (2007). J. Heterocycl. Chem. 44, 1023-1027.]), the title compound was synthesized and its crystal structure determined.

The mol­ecule of the title compound is built up from two fused rings linked to a methyl group and a thione-sulfur atom as shown in Fig. 1[link]. The mean plane through the triazepine ring makes a dihedral angle of 18.48 (8)° with the triazole ring. The triazepine ring adopts a boat conformation as indicated by the total puckering amplitude QT = 0.7882 (15) Å and spherical polar angles θ2 = 71.71 (10)° with φ2 = 22.27 (11)° and φ3 = 122.3 (3)° (calculated using PARST; Nardelli, 1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Figure 1]
Figure 1
Plot of the mol­ecule of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

In the crystal, the mol­ecules are linked into supra­molecular layers in the ab plane by N5—H5N⋯N4, C2—H2A⋯N3 and C5—H5⋯N1 hydrogen bonds, Table 1[link], in addition to ππ inter­actions between triazole rings, Fig. 2[link]. Connections along the c axis occur between sulfur atoms [S⋯S = 3.5972 (16) Å]

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5N⋯N4i 0.86 2.01 2.8530 (18) 167
C2—H2A⋯N3ii 0.97 2.56 3.487 (2) 161
C5—H5⋯N1iii 0.93 2.58 3.442 (2) 155
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x, -y, -z+1; (iii) -x, -y+1, -z+1.
[Figure 2]
Figure 2
Plot showing mol­ecules linked by N—H⋯N and C–H⋯N hydrogen bonds, in addition to ππ inter­actions.

Synthesis and crystallization

To a solution of 6-methyl-7H-[1,2,4]triazolo[4,3-b][1,2,4]triazepin-8(9H)-one (2 g, 12 mmol) and phosphore penta­sulfide (2.7 g, 15 mmol) was added a small amount of sodium bicarbonate. The reaction mixture was heated at gentle reflux for 4 h then evaporated to dryness. The residue was taken up in boiling water (20 ml) and the precipitate that formed by cooling was filtered. The purified product was crystallized from ethanol to give colourless crystals in a yield of 65%.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C6H7N5S
Mr 181.23
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 6.238 (2), 7.234 (3), 10.887 (4)
α, β, γ (°) 103.331 (15), 92.329 (16), 113.846 (15)
V3) 432.3 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.33
Crystal size (mm) 0.35 × 0.30 × 0.26
 
Data collection
Diffractometer Bruker X8 APEX
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.644, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 10195, 2287, 2038
Rint 0.032
(sin θ/λ)max−1) 0.694
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.119, 1.07
No. of reflections 2287
No. of parameters 110
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.47, −0.38
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: Mercury (Macrae et al., 2008) and publCIF (Westrip, 2010).

6-Methyl-7H-1,2,4-triazolo[4,3-b][1,2,4]triazepin-8(9H)-thione top
Crystal data top
C6H7N5SZ = 2
Mr = 181.23F(000) = 188
Triclinic, P1Dx = 1.392 Mg m3
a = 6.238 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.234 (3) ÅCell parameters from 2287 reflections
c = 10.887 (4) Åθ = 3.2–29.6°
α = 103.331 (15)°µ = 0.33 mm1
β = 92.329 (16)°T = 296 K
γ = 113.846 (15)°Block, colourless
V = 432.3 (3) Å30.35 × 0.30 × 0.26 mm
Data collection top
Bruker X8 APEX
diffractometer
2287 independent reflections
Radiation source: fine-focus sealed tube2038 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
φ and ω scansθmax = 29.6°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 88
Tmin = 0.644, Tmax = 0.747k = 1010
10195 measured reflectionsl = 1415
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0613P)2 + 0.1769P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2287 reflectionsΔρmax = 0.47 e Å3
110 parametersΔρmin = 0.38 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5444 (3)0.3425 (2)0.76025 (13)0.0284 (3)
C20.3456 (3)0.4034 (2)0.79409 (13)0.0306 (3)
H2A0.19510.28070.76560.037*
H2B0.36270.45530.88610.037*
C30.3466 (3)0.5699 (2)0.73291 (14)0.0318 (3)
C40.4105 (4)0.7857 (3)0.81648 (19)0.0507 (5)
H4A0.56920.84250.86070.076*
H4B0.30250.77900.87750.076*
H4C0.40070.87410.76500.076*
C50.1097 (3)0.2566 (2)0.41943 (15)0.0344 (3)
H50.02190.31700.38690.041*
C60.3465 (2)0.2043 (2)0.54244 (13)0.0253 (3)
N10.2954 (2)0.54000 (18)0.61292 (13)0.0324 (3)
N20.2479 (2)0.33992 (17)0.53619 (11)0.0275 (2)
N30.1165 (2)0.0823 (2)0.35948 (12)0.0345 (3)
N40.2688 (2)0.04725 (18)0.43825 (11)0.0295 (3)
N50.5193 (2)0.23657 (19)0.63695 (11)0.0290 (3)
H5N0.60360.16880.61480.035*
S10.77311 (8)0.39546 (8)0.86328 (4)0.04839 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0301 (7)0.0290 (6)0.0273 (6)0.0153 (5)0.0046 (5)0.0045 (5)
C20.0326 (7)0.0352 (7)0.0271 (6)0.0192 (6)0.0079 (5)0.0045 (5)
C30.0310 (7)0.0285 (6)0.0360 (7)0.0160 (5)0.0074 (6)0.0020 (5)
C40.0658 (12)0.0320 (8)0.0477 (10)0.0219 (8)0.0097 (9)0.0037 (7)
C50.0345 (7)0.0372 (7)0.0336 (7)0.0197 (6)0.0010 (6)0.0059 (6)
C60.0259 (6)0.0253 (6)0.0271 (6)0.0140 (5)0.0056 (5)0.0051 (5)
N10.0369 (6)0.0246 (5)0.0380 (7)0.0176 (5)0.0062 (5)0.0042 (4)
N20.0292 (6)0.0257 (5)0.0294 (6)0.0155 (4)0.0027 (4)0.0041 (4)
N30.0334 (6)0.0378 (6)0.0308 (6)0.0178 (5)0.0017 (5)0.0024 (5)
N40.0314 (6)0.0287 (5)0.0280 (6)0.0158 (5)0.0022 (4)0.0017 (4)
N50.0317 (6)0.0332 (6)0.0261 (5)0.0212 (5)0.0029 (4)0.0015 (4)
S10.0423 (3)0.0695 (3)0.0326 (2)0.0328 (2)0.00534 (17)0.00263 (19)
Geometric parameters (Å, º) top
C1—N51.3509 (18)C4—H4C0.9600
C1—C21.5072 (19)C5—N31.298 (2)
C1—S11.6343 (16)C5—N21.3636 (19)
C2—C31.503 (2)C5—H50.9300
C2—H2A0.9700C6—N41.3144 (17)
C2—H2B0.9700C6—N21.3647 (17)
C3—N11.279 (2)C6—N51.3675 (18)
C3—C41.495 (2)N1—N21.3986 (16)
C4—H4A0.9600N3—N41.3898 (18)
C4—H4B0.9600N5—H5N0.8599
N5—C1—C2114.93 (12)H4B—C4—H4C109.5
N5—C1—S1121.53 (11)N3—C5—N2111.33 (13)
C2—C1—S1123.54 (10)N3—C5—H5124.3
C3—C2—C1111.00 (12)N2—C5—H5124.3
C3—C2—H2A109.4N4—C6—N2110.24 (12)
C1—C2—H2A109.4N4—C6—N5124.33 (12)
C3—C2—H2B109.4N2—C6—N5125.12 (12)
C1—C2—H2B109.4C3—N1—N2115.92 (12)
H2A—C2—H2B108.0C5—N2—C6104.35 (11)
N1—C3—C4117.00 (15)C5—N2—N1122.64 (12)
N1—C3—C2124.37 (12)C6—N2—N1132.08 (12)
C4—C3—C2118.62 (15)C5—N3—N4106.88 (12)
C3—C4—H4A109.5C6—N4—N3107.19 (12)
C3—C4—H4B109.5C1—N5—C6125.05 (12)
H4A—C4—H4B109.5C1—N5—H5N120.1
C3—C4—H4C109.5C6—N5—H5N114.4
H4A—C4—H4C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5N···N4i0.862.012.8530 (18)167
C2—H2A···N3ii0.972.563.487 (2)161
C5—H5···N1iii0.932.583.442 (2)155
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z+1; (iii) x, y+1, z+1.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements and the University Sultan Moulay Slimane, Beni-Mellal, Morocco, for financial support.

References

First citationAcheson, R. M. & Taylor, N. F. (1956). J. Chem. Soc. pp. 4727–4731.  CrossRef Web of Science Google Scholar
First citationBruker (2009). APEX2 and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationChikazu, D., Shindo, M., Iwasaka, T., Katagiri, M., Manabe, N., Takato, T., Nakamura, K. & Kawaguchi, H. (2000). J. Bone Miner. Res. 15, 674–682.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDabholkar, V. V. & More, G. D. (2004). Indian J. Chem. Sect. B, 43, 682–684.  Google Scholar
First citationEssassi, E. M., Lavergne, J. P. & Viallefont, P. (1976). J. Heterocycl. Chem. 13, 885–887.  CrossRef CAS Google Scholar
First citationEssassi, E. M., Lavergne, J. P. & Viallffont, P. (1977). Tetrahedron, 33, 2807–2812.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGupta, M. (2007). J. Heterocycl. Chem. 44, 1023–1027.  CrossRef CAS Google Scholar
First citationGupta, M., Paul, S. & Gupta, R. (2011). Eur. J. Med. Chem. 46, 631–635.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSewell, P. & Hawking, F. (1950). Brit. J. Pharmacol. 5, 239–260.  PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds