organic compounds
6-Methyl-7H-1,2,4-triazolo[4,3-b][1,2,4]triazepin-8(9H)-thione
aLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétences Pharmacochimie, Mohammed V University in Rabat, BP 1014 Avenue Ibn Batouta, Rabat, Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: y_elbakri@yahoo.com
In the molecule of the title compound, C6H7N5S, the triazole ring is planar, while the triazepine ring displays a boat conformation. The dihedral angle between the mean plane through the triazole and triazepine rings is 18.48 (8)°. In the crystal, molecules are linked into centrosymmetric dimers by N—H⋯N hydrogen bonds via eight-membered {⋯HNCN}2 synthons. Supramolecular layers in the ab plane are sustained by C—H⋯N and π–π interactions [inter-centroid separation between triazole rings = 3.2880 (16) Å]. Connections along the c axis occur between S atoms [S⋯S = 3.5972 (16) Å].
Keywords: crystal structure; triazole; triazepin-8(9H)-thione; hydrogen bonds.
CCDC reference: 1496665
Structure description
Triazolotriazepine derivatives have been used as potent inhibitors of bone resorption (Chikazu et al., 2000). They also exhibit anti-fungal activity (Gupta et al., 2011). In view of the potential biological activity of fused azepines (Dabholkar & More, 2004; Sewell & Hawking, 1950; Acheson & Taylor, 1956) and as part of our interest in the synthesis of new heterocyclic systems containing triazole rings and triazepine (Essassi et al., 1976, 1977; Gupta, 2007), the title compound was synthesized and its determined.
The molecule of the title compound is built up from two fused rings linked to a methyl group and a thione-sulfur atom as shown in Fig. 1. The mean plane through the triazepine ring makes a dihedral angle of 18.48 (8)° with the triazole ring. The triazepine ring adopts a boat conformation as indicated by the total puckering amplitude QT = 0.7882 (15) Å and spherical polar angles θ2 = 71.71 (10)° with φ2 = 22.27 (11)° and φ3 = 122.3 (3)° (calculated using PARST; Nardelli, 1983).
In the crystal, the molecules are linked into supramolecular layers in the ab plane by N5—H5N⋯N4, C2—H2A⋯N3 and C5—H5⋯N1 hydrogen bonds, Table 1, in addition to π–π interactions between triazole rings, Fig. 2. Connections along the c axis occur between sulfur atoms [S⋯S = 3.5972 (16) Å]
Synthesis and crystallization
To a solution of 6-methyl-7H-[1,2,4]triazolo[4,3-b][1,2,4]triazepin-8(9H)-one (2 g, 12 mmol) and phosphore pentasulfide (2.7 g, 15 mmol) was added a small amount of sodium bicarbonate. The reaction mixture was heated at gentle reflux for 4 h then evaporated to dryness. The residue was taken up in boiling water (20 ml) and the precipitate that formed by cooling was filtered. The purified product was crystallized from ethanol to give colourless crystals in a yield of 65%.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1496665
10.1107/S2414314616012293/tk4020sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2414314616012293/tk4020Isup2.hkl
Supporting information file. DOI: 10.1107/S2414314616012293/tk4020Isup3.cml
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: Mercury (Macrae et al., 2008) and publCIF (Westrip, 2010).C6H7N5S | Z = 2 |
Mr = 181.23 | F(000) = 188 |
Triclinic, P1 | Dx = 1.392 Mg m−3 |
a = 6.238 (2) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 7.234 (3) Å | Cell parameters from 2287 reflections |
c = 10.887 (4) Å | θ = 3.2–29.6° |
α = 103.331 (15)° | µ = 0.33 mm−1 |
β = 92.329 (16)° | T = 296 K |
γ = 113.846 (15)° | Block, colourless |
V = 432.3 (3) Å3 | 0.35 × 0.30 × 0.26 mm |
Bruker X8 APEX diffractometer | 2287 independent reflections |
Radiation source: fine-focus sealed tube | 2038 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.032 |
φ and ω scans | θmax = 29.6°, θmin = 3.2° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −8→8 |
Tmin = 0.644, Tmax = 0.747 | k = −10→10 |
10195 measured reflections | l = −14→15 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.039 | H-atom parameters constrained |
wR(F2) = 0.119 | w = 1/[σ2(Fo2) + (0.0613P)2 + 0.1769P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max < 0.001 |
2287 reflections | Δρmax = 0.47 e Å−3 |
110 parameters | Δρmin = −0.38 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.5444 (3) | 0.3425 (2) | 0.76025 (13) | 0.0284 (3) | |
C2 | 0.3456 (3) | 0.4034 (2) | 0.79409 (13) | 0.0306 (3) | |
H2A | 0.1951 | 0.2807 | 0.7656 | 0.037* | |
H2B | 0.3627 | 0.4553 | 0.8861 | 0.037* | |
C3 | 0.3466 (3) | 0.5699 (2) | 0.73291 (14) | 0.0318 (3) | |
C4 | 0.4105 (4) | 0.7857 (3) | 0.81648 (19) | 0.0507 (5) | |
H4A | 0.5692 | 0.8425 | 0.8607 | 0.076* | |
H4B | 0.3025 | 0.7790 | 0.8775 | 0.076* | |
H4C | 0.4007 | 0.8741 | 0.7650 | 0.076* | |
C5 | 0.1097 (3) | 0.2566 (2) | 0.41943 (15) | 0.0344 (3) | |
H5 | 0.0219 | 0.3170 | 0.3869 | 0.041* | |
C6 | 0.3465 (2) | 0.2043 (2) | 0.54244 (13) | 0.0253 (3) | |
N1 | 0.2954 (2) | 0.54000 (18) | 0.61292 (13) | 0.0324 (3) | |
N2 | 0.2479 (2) | 0.33992 (17) | 0.53619 (11) | 0.0275 (2) | |
N3 | 0.1165 (2) | 0.0823 (2) | 0.35948 (12) | 0.0345 (3) | |
N4 | 0.2688 (2) | 0.04725 (18) | 0.43825 (11) | 0.0295 (3) | |
N5 | 0.5193 (2) | 0.23657 (19) | 0.63695 (11) | 0.0290 (3) | |
H5N | 0.6036 | 0.1688 | 0.6148 | 0.035* | |
S1 | 0.77311 (8) | 0.39546 (8) | 0.86328 (4) | 0.04839 (17) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0301 (7) | 0.0290 (6) | 0.0273 (6) | 0.0153 (5) | 0.0046 (5) | 0.0045 (5) |
C2 | 0.0326 (7) | 0.0352 (7) | 0.0271 (6) | 0.0192 (6) | 0.0079 (5) | 0.0045 (5) |
C3 | 0.0310 (7) | 0.0285 (6) | 0.0360 (7) | 0.0160 (5) | 0.0074 (6) | 0.0020 (5) |
C4 | 0.0658 (12) | 0.0320 (8) | 0.0477 (10) | 0.0219 (8) | 0.0097 (9) | −0.0037 (7) |
C5 | 0.0345 (7) | 0.0372 (7) | 0.0336 (7) | 0.0197 (6) | −0.0010 (6) | 0.0059 (6) |
C6 | 0.0259 (6) | 0.0253 (6) | 0.0271 (6) | 0.0140 (5) | 0.0056 (5) | 0.0051 (5) |
N1 | 0.0369 (6) | 0.0246 (5) | 0.0380 (7) | 0.0176 (5) | 0.0062 (5) | 0.0042 (4) |
N2 | 0.0292 (6) | 0.0257 (5) | 0.0294 (6) | 0.0155 (4) | 0.0027 (4) | 0.0041 (4) |
N3 | 0.0334 (6) | 0.0378 (6) | 0.0308 (6) | 0.0178 (5) | −0.0017 (5) | 0.0024 (5) |
N4 | 0.0314 (6) | 0.0287 (5) | 0.0280 (6) | 0.0158 (5) | 0.0022 (4) | 0.0017 (4) |
N5 | 0.0317 (6) | 0.0332 (6) | 0.0261 (5) | 0.0212 (5) | 0.0029 (4) | 0.0015 (4) |
S1 | 0.0423 (3) | 0.0695 (3) | 0.0326 (2) | 0.0328 (2) | −0.00534 (17) | −0.00263 (19) |
C1—N5 | 1.3509 (18) | C4—H4C | 0.9600 |
C1—C2 | 1.5072 (19) | C5—N3 | 1.298 (2) |
C1—S1 | 1.6343 (16) | C5—N2 | 1.3636 (19) |
C2—C3 | 1.503 (2) | C5—H5 | 0.9300 |
C2—H2A | 0.9700 | C6—N4 | 1.3144 (17) |
C2—H2B | 0.9700 | C6—N2 | 1.3647 (17) |
C3—N1 | 1.279 (2) | C6—N5 | 1.3675 (18) |
C3—C4 | 1.495 (2) | N1—N2 | 1.3986 (16) |
C4—H4A | 0.9600 | N3—N4 | 1.3898 (18) |
C4—H4B | 0.9600 | N5—H5N | 0.8599 |
N5—C1—C2 | 114.93 (12) | H4B—C4—H4C | 109.5 |
N5—C1—S1 | 121.53 (11) | N3—C5—N2 | 111.33 (13) |
C2—C1—S1 | 123.54 (10) | N3—C5—H5 | 124.3 |
C3—C2—C1 | 111.00 (12) | N2—C5—H5 | 124.3 |
C3—C2—H2A | 109.4 | N4—C6—N2 | 110.24 (12) |
C1—C2—H2A | 109.4 | N4—C6—N5 | 124.33 (12) |
C3—C2—H2B | 109.4 | N2—C6—N5 | 125.12 (12) |
C1—C2—H2B | 109.4 | C3—N1—N2 | 115.92 (12) |
H2A—C2—H2B | 108.0 | C5—N2—C6 | 104.35 (11) |
N1—C3—C4 | 117.00 (15) | C5—N2—N1 | 122.64 (12) |
N1—C3—C2 | 124.37 (12) | C6—N2—N1 | 132.08 (12) |
C4—C3—C2 | 118.62 (15) | C5—N3—N4 | 106.88 (12) |
C3—C4—H4A | 109.5 | C6—N4—N3 | 107.19 (12) |
C3—C4—H4B | 109.5 | C1—N5—C6 | 125.05 (12) |
H4A—C4—H4B | 109.5 | C1—N5—H5N | 120.1 |
C3—C4—H4C | 109.5 | C6—N5—H5N | 114.4 |
H4A—C4—H4C | 109.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
N5—H5N···N4i | 0.86 | 2.01 | 2.8530 (18) | 167 |
C2—H2A···N3ii | 0.97 | 2.56 | 3.487 (2) | 161 |
C5—H5···N1iii | 0.93 | 2.58 | 3.442 (2) | 155 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x, −y, −z+1; (iii) −x, −y+1, −z+1. |
Acknowledgements
The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements and the University Sultan Moulay Slimane, Beni-Mellal, Morocco, for financial support.
References
Acheson, R. M. & Taylor, N. F. (1956). J. Chem. Soc. pp. 4727–4731. CrossRef Web of Science Google Scholar
Bruker (2009). APEX2 and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Chikazu, D., Shindo, M., Iwasaka, T., Katagiri, M., Manabe, N., Takato, T., Nakamura, K. & Kawaguchi, H. (2000). J. Bone Miner. Res. 15, 674–682. Web of Science CrossRef PubMed CAS Google Scholar
Dabholkar, V. V. & More, G. D. (2004). Indian J. Chem. Sect. B, 43, 682–684. Google Scholar
Essassi, E. M., Lavergne, J. P. & Viallefont, P. (1976). J. Heterocycl. Chem. 13, 885–887. CrossRef CAS Google Scholar
Essassi, E. M., Lavergne, J. P. & Viallffont, P. (1977). Tetrahedron, 33, 2807–2812. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gupta, M. (2007). J. Heterocycl. Chem. 44, 1023–1027. CrossRef CAS Google Scholar
Gupta, M., Paul, S. & Gupta, R. (2011). Eur. J. Med. Chem. 46, 631–635. Web of Science CrossRef CAS PubMed Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Nardelli, M. (1983). Acta Cryst. C39, 1141–1142. CrossRef CAS Web of Science IUCr Journals Google Scholar
Sewell, P. & Hawking, F. (1950). Brit. J. Pharmacol. 5, 239–260. PubMed CAS Web of Science Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.