metal-organic compounds
Bis(triethylammonium) tetrabromidozincate
aLaboratoire de Chimie Minérale et Analytique, Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, and bInstitute of Inorganic Chemistry, TU Bergakademie Freiberg, Leipziger Strasse 29, D-09596 Freiberg, Germany
*Correspondence e-mail: dlibasse@gmail.com
The title molecular salt, (C6H16N)[ZnBr4], consists of a tetrahedral tetrabromidozincate dianion and two triethylammonium cations linked by N—H⋯Br hydrogen bonds. In the crystal, these three-membered units are linked via C—H⋯Br hydrogen bonds, forming layers parallel to the ab plane.
Keywords: crystal structure; tetrahedral; tetrabromozincate; triethylammonium ions; N—H⋯Br hydrogen bonds.
CCDC reference: 1499335
Structure description
Many authors worldwide have synthesized ammonium salts of numerous acids for different purposes (Mouchaham et al., 2015; Hamdouni et al., 2015). A heterodinuclear complex containing [ZnBr4]2− and triethylammonium ions with an Ru component has been reported (Mauthner et al., 1999). The Senegalese group has used such as dipropylamine, diisopropylamine, monocyclohexylamine, dicyclohexylamine, dibutylamine, methyl-2-imidazole, ethylendiamine for obtaining the corresponding salts with sulfuric, oxalic and and have reacted theirs salts with stannic organo- or halidostannate compounds or transition metal halides (Sarr et al., 2014; Diop et al., 2016). In this context, (Et3NH)2·C2O4 has been allowed to react in ethanol with ZnBr2 and crystals of the title molecular salt were obtained.
The molecular structure of the title molecular salt is shown in Fig. 1. It consists of a tetrahedral [ZnBr4]2− dianion and two triethylammonium ions linked by N—H⋯Br hydrogen bonds (Table 1). The four Br atoms are non-equivalent; their distances range from 2.3945 (13) to 2.4408 (14) Å. Two of the Br atoms, Br3 and Br4, are involved in hydrogen bonds (Fig. 1 and Table 1) and their distances to the Zn atom are 2.4408 (14) and 2.4228 (13) Å, respectively. Atoms Br1 and Br2, which are not involved in N—H⋯Br hydrogen bonding, have shorter Zn—Br bond lengths [2.3945 (13) and 2.3947 (13) Å, respectively]. The Br—Zn—Br angles vary from 107.20 (2) to 112.91 (2)°, indicating a slightly distorted tetrahedron around the Zn atom with a τ4 geometry index of 0.95 (for a perfect tetrahedron τ4 is equal to 1; Yang et al., 2007).
In the crystal, the (Et3NH)2·ZnBr4 hydrogen-bonded species are connected to their neighbours through C—H⋯Br hydrogen bonds, forming layers parallel to the ab plane (Table 1 and Fig. 2).
Synthesis and crystallization
Oxalic acid was totally neutralized with Et3NH in water giving (Et3NH)2C2O4, which was then mixed with ZnBr2 in ethanol in a 1:1 ratio. A white precipitate was obtained and filtered. The filtrate was allowed to evaporate slowly at room temperature giving colourless crystals of the title molecular salt, suitable for X-ray diffraction analysis.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2
|
Structural data
CCDC reference: 1499335
10.1107/S2414314616013171/su5321sup1.cif
contains datablocks I, Global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2414314616013171/su5321Isup2.hkl
Data collection: X-AREA (Stoe & Cie, 2009); cell
X-AREA (Stoe & Cie, 2009); data reduction: X-RED (Stoe & Cie, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).(C6H16N)2[ZnBr4] | Dx = 1.814 Mg m−3 |
Mr = 589.40 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbca | Cell parameters from 707 reflections |
a = 12.383 (6) Å | θ = 2.8–24.4° |
b = 13.145 (6) Å | µ = 8.54 mm−1 |
c = 26.510 (11) Å | T = 150 K |
V = 4315 (4) Å3 | Plate, colourless |
Z = 8 | 0.5 × 0.2 × 0.1 mm |
F(000) = 2304 |
Stoe IPDS 2T diffractometer | 4604 independent reflections |
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus | 3820 reflections with I > 2σ(I) |
Detector resolution: 6.67 pixels mm-1 | Rint = 0.066 |
combination of /w– and /f–scans | θmax = 26.8°, θmin = 2.4° |
Absorption correction: integration (Coppens, 1970) | h = −15→15 |
Tmin = 0.074, Tmax = 0.135 | k = −16→16 |
35899 measured reflections | l = −33→31 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.024 | Hydrogen site location: mixed |
wR(F2) = 0.045 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0131P)2 + 0.7809P] where P = (Fo2 + 2Fc2)/3 |
4597 reflections | (Δ/σ)max = 0.001 |
186 parameters | Δρmax = 0.69 e Å−3 |
0 restraints | Δρmin = −0.54 e Å−3 |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles |
x | y | z | Uiso*/Ueq | ||
Br1 | 1.07931 (3) | 0.07296 (3) | 0.37735 (2) | 0.0331 (1) | |
Br2 | 0.77855 (3) | 0.15351 (3) | 0.41392 (2) | 0.0375 (1) | |
Br3 | 0.90854 (3) | 0.23837 (3) | 0.28535 (2) | 0.0347 (1) | |
Br4 | 1.01299 (3) | 0.35305 (3) | 0.41642 (2) | 0.0454 (1) | |
Zn1 | 0.94409 (3) | 0.20302 (3) | 0.37420 (2) | 0.0270 (1) | |
N1 | 0.8953 (2) | 0.2988 (2) | 0.52772 (10) | 0.0266 (8) | |
C1 | 0.8993 (3) | 0.1880 (2) | 0.54246 (13) | 0.0300 (10) | |
C2 | 1.0072 (3) | 0.1401 (3) | 0.53058 (14) | 0.0406 (11) | |
C3 | 0.7812 (2) | 0.3369 (3) | 0.52691 (14) | 0.0323 (10) | |
C4 | 0.7718 (3) | 0.4452 (3) | 0.50953 (15) | 0.0417 (12) | |
C5 | 0.9698 (3) | 0.3640 (3) | 0.55787 (15) | 0.0379 (11) | |
C6 | 0.9399 (4) | 0.3717 (3) | 0.61273 (15) | 0.0600 (14) | |
N2 | 0.2290 (2) | 0.4253 (2) | 0.23986 (11) | 0.0305 (9) | |
C7 | 0.1726 (3) | 0.3843 (4) | 0.28569 (14) | 0.0487 (13) | |
C8 | 0.2462 (3) | 0.3374 (3) | 0.32364 (13) | 0.0419 (13) | |
C9 | 0.2943 (3) | 0.5177 (3) | 0.25324 (16) | 0.0470 (12) | |
C10 | 0.3711 (3) | 0.5483 (4) | 0.21273 (17) | 0.0563 (16) | |
C11 | 0.1516 (3) | 0.4464 (3) | 0.19735 (14) | 0.0390 (11) | |
C12 | 0.1047 (3) | 0.3521 (3) | 0.17426 (14) | 0.0407 (12) | |
H1 | 0.918 (3) | 0.308 (2) | 0.4941 (12) | 0.023 (8)* | |
H1A | 0.84290 | 0.15150 | 0.52470 | 0.0360* | |
H1B | 0.88530 | 0.18190 | 0.57830 | 0.0360* | |
H2A | 1.02130 | 0.14560 | 0.49510 | 0.0610* | |
H2B | 1.00590 | 0.06960 | 0.54010 | 0.0610* | |
H2C | 1.06300 | 0.17450 | 0.54900 | 0.0610* | |
H3A | 0.75100 | 0.33130 | 0.56060 | 0.0390* | |
H3B | 0.73880 | 0.29390 | 0.50470 | 0.0390* | |
H4A | 0.80090 | 0.48960 | 0.53490 | 0.0620* | |
H4B | 0.69720 | 0.46140 | 0.50390 | 0.0620* | |
H4C | 0.81140 | 0.45380 | 0.47870 | 0.0620* | |
H5A | 0.97060 | 0.43180 | 0.54340 | 0.0460* | |
H5B | 1.04240 | 0.33670 | 0.55530 | 0.0460* | |
H6A | 0.86730 | 0.39670 | 0.61570 | 0.0900* | |
H6B | 0.98840 | 0.41770 | 0.62940 | 0.0900* | |
H6C | 0.94480 | 0.30570 | 0.62810 | 0.0900* | |
H2 | 0.271 (3) | 0.382 (3) | 0.2304 (13) | 0.027 (10)* | |
H7A | 0.13310 | 0.43920 | 0.30170 | 0.0580* | |
H7B | 0.12040 | 0.33360 | 0.27500 | 0.0580* | |
H8A | 0.28780 | 0.28460 | 0.30790 | 0.0630* | |
H8B | 0.20430 | 0.30900 | 0.35070 | 0.0630* | |
H8C | 0.29400 | 0.38840 | 0.33680 | 0.0630* | |
H9A | 0.24560 | 0.57390 | 0.26000 | 0.0560* | |
H9B | 0.33460 | 0.50410 | 0.28390 | 0.0560* | |
H10A | 0.41190 | 0.49010 | 0.20200 | 0.0840* | |
H10B | 0.41940 | 0.59940 | 0.22540 | 0.0840* | |
H10C | 0.33150 | 0.57520 | 0.18460 | 0.0840* | |
H11A | 0.09320 | 0.48850 | 0.20990 | 0.0470* | |
H11B | 0.18900 | 0.48470 | 0.17140 | 0.0470* | |
H12A | 0.16200 | 0.31020 | 0.16140 | 0.0610* | |
H12B | 0.05720 | 0.37060 | 0.14720 | 0.0610* | |
H12C | 0.06510 | 0.31520 | 0.19940 | 0.0610* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0319 (2) | 0.0318 (2) | 0.0355 (2) | 0.0054 (2) | −0.0045 (2) | −0.0037 (2) |
Br2 | 0.0293 (2) | 0.0476 (2) | 0.0356 (2) | −0.0069 (2) | 0.0061 (1) | 0.0024 (2) |
Br3 | 0.0343 (2) | 0.0374 (2) | 0.0324 (2) | 0.0045 (2) | 0.0021 (2) | 0.0077 (2) |
Br4 | 0.0590 (2) | 0.0294 (2) | 0.0479 (2) | −0.0174 (2) | 0.0234 (2) | −0.0132 (2) |
Zn1 | 0.0272 (2) | 0.0244 (2) | 0.0294 (2) | −0.0007 (2) | 0.0036 (2) | −0.0002 (2) |
N1 | 0.0255 (14) | 0.0247 (14) | 0.0297 (14) | −0.0031 (12) | 0.0046 (11) | −0.0023 (12) |
C1 | 0.0351 (18) | 0.0218 (17) | 0.0331 (17) | −0.0007 (15) | 0.0026 (14) | −0.0016 (14) |
C2 | 0.046 (2) | 0.034 (2) | 0.0419 (19) | 0.0124 (18) | 0.0048 (17) | 0.0007 (18) |
C3 | 0.0246 (16) | 0.0295 (19) | 0.0429 (19) | 0.0007 (15) | 0.0031 (15) | −0.0050 (16) |
C4 | 0.034 (2) | 0.036 (2) | 0.055 (2) | 0.0075 (17) | −0.0011 (17) | −0.0007 (19) |
C5 | 0.0260 (17) | 0.0247 (19) | 0.063 (2) | −0.0015 (15) | −0.0083 (16) | −0.0043 (18) |
C6 | 0.090 (3) | 0.040 (2) | 0.050 (2) | −0.006 (2) | −0.033 (2) | −0.006 (2) |
N2 | 0.0283 (15) | 0.0290 (16) | 0.0341 (16) | −0.0002 (14) | −0.0049 (12) | −0.0020 (13) |
C7 | 0.0312 (18) | 0.074 (3) | 0.041 (2) | −0.001 (2) | 0.0059 (17) | 0.002 (2) |
C8 | 0.0378 (19) | 0.053 (3) | 0.0350 (17) | −0.0027 (19) | 0.0076 (17) | 0.0070 (19) |
C9 | 0.049 (2) | 0.041 (2) | 0.051 (2) | −0.0059 (19) | −0.0137 (19) | −0.005 (2) |
C10 | 0.046 (2) | 0.056 (3) | 0.067 (3) | −0.021 (2) | −0.015 (2) | 0.020 (2) |
C11 | 0.0360 (19) | 0.036 (2) | 0.045 (2) | 0.0021 (17) | −0.0153 (17) | −0.0002 (17) |
C12 | 0.042 (2) | 0.038 (2) | 0.042 (2) | −0.0006 (19) | −0.0147 (16) | −0.0030 (18) |
Br1—Zn1 | 2.3945 (13) | C5—H5B | 0.9700 |
Br2—Zn1 | 2.3947 (13) | C5—H5A | 0.9700 |
Br3—Zn1 | 2.4408 (14) | C6—H6B | 0.9600 |
Br4—Zn1 | 2.4228 (13) | C6—H6C | 0.9600 |
N1—C5 | 1.492 (5) | C6—H6A | 0.9600 |
N1—C1 | 1.509 (4) | N2—H2 | 0.81 (4) |
N1—C3 | 1.499 (4) | C7—C8 | 1.491 (5) |
N1—H1 | 0.94 (3) | C9—C10 | 1.490 (6) |
C1—C2 | 1.510 (5) | C11—C12 | 1.500 (6) |
C3—C4 | 1.501 (6) | C7—H7A | 0.9700 |
C5—C6 | 1.504 (6) | C7—H7B | 0.9700 |
C1—H1A | 0.9700 | C8—H8C | 0.9600 |
C1—H1B | 0.9700 | C8—H8A | 0.9600 |
C2—H2B | 0.9600 | C8—H8B | 0.9600 |
C2—H2C | 0.9600 | C9—H9B | 0.9700 |
C2—H2A | 0.9600 | C9—H9A | 0.9700 |
N2—C11 | 1.505 (5) | C10—H10A | 0.9600 |
N2—C7 | 1.501 (5) | C10—H10B | 0.9600 |
N2—C9 | 1.502 (5) | C10—H10C | 0.9600 |
C3—H3A | 0.9700 | C11—H11A | 0.9700 |
C3—H3B | 0.9700 | C11—H11B | 0.9700 |
C4—H4C | 0.9600 | C12—H12B | 0.9600 |
C4—H4A | 0.9600 | C12—H12C | 0.9600 |
C4—H4B | 0.9600 | C12—H12A | 0.9600 |
Br1—Zn1—Br3 | 107.20 (2) | H6A—C6—H6C | 109.00 |
Br1—Zn1—Br4 | 108.59 (2) | C5—C6—H6C | 110.00 |
Br2—Zn1—Br3 | 108.77 (2) | H6A—C6—H6B | 109.00 |
Br2—Zn1—Br4 | 108.64 (2) | C5—C6—H6B | 109.00 |
Br3—Zn1—Br4 | 110.75 (2) | H6B—C6—H6C | 110.00 |
Br1—Zn1—Br2 | 112.91 (2) | C5—C6—H6A | 109.00 |
C1—N1—C5 | 113.3 (3) | C11—N2—H2 | 108 (2) |
C1—N1—C3 | 110.9 (3) | C7—N2—H2 | 107 (3) |
C3—N1—C5 | 113.5 (3) | C9—N2—H2 | 107 (3) |
C1—N1—H1 | 111.0 (16) | N2—C7—C8 | 114.2 (3) |
N1—C1—C2 | 112.2 (3) | N2—C9—C10 | 113.1 (3) |
C3—N1—H1 | 103 (2) | N2—C11—C12 | 113.6 (3) |
C5—N1—H1 | 104 (2) | N2—C7—H7B | 109.00 |
N1—C3—C4 | 113.2 (3) | N2—C7—H7A | 109.00 |
N1—C5—C6 | 113.9 (3) | C8—C7—H7A | 109.00 |
C2—C1—H1B | 109.00 | C8—C7—H7B | 109.00 |
H1A—C1—H1B | 108.00 | H7A—C7—H7B | 108.00 |
N1—C1—H1A | 109.00 | H8A—C8—H8B | 109.00 |
N1—C1—H1B | 109.00 | H8A—C8—H8C | 109.00 |
C2—C1—H1A | 109.00 | H8B—C8—H8C | 109.00 |
C7—N2—C9 | 110.5 (3) | C7—C8—H8A | 109.00 |
C1—C2—H2A | 110.00 | C7—C8—H8B | 110.00 |
C1—C2—H2B | 109.00 | C7—C8—H8C | 109.00 |
C1—C2—H2C | 110.00 | C10—C9—H9A | 109.00 |
H2A—C2—H2B | 109.00 | N2—C9—H9A | 109.00 |
H2A—C2—H2C | 109.00 | N2—C9—H9B | 109.00 |
H2B—C2—H2C | 109.00 | C10—C9—H9B | 109.00 |
C7—N2—C11 | 112.1 (3) | H9A—C9—H9B | 108.00 |
C9—N2—C11 | 111.8 (3) | C9—C10—H10B | 110.00 |
N1—C3—H3A | 109.00 | C9—C10—H10A | 110.00 |
C4—C3—H3B | 109.00 | H10A—C10—H10B | 109.00 |
N1—C3—H3B | 109.00 | H10A—C10—H10C | 109.00 |
C4—C3—H3A | 109.00 | C9—C10—H10C | 109.00 |
H3A—C3—H3B | 108.00 | H10B—C10—H10C | 109.00 |
H4B—C4—H4C | 109.00 | C12—C11—H11A | 109.00 |
C3—C4—H4C | 109.00 | C12—C11—H11B | 109.00 |
H4A—C4—H4B | 110.00 | N2—C11—H11A | 109.00 |
H4A—C4—H4C | 109.00 | N2—C11—H11B | 109.00 |
C3—C4—H4B | 109.00 | H11A—C11—H11B | 108.00 |
C3—C4—H4A | 109.00 | H12B—C12—H12C | 110.00 |
N1—C5—H5B | 109.00 | C11—C12—H12A | 109.00 |
N1—C5—H5A | 109.00 | C11—C12—H12B | 109.00 |
H5A—C5—H5B | 108.00 | C11—C12—H12C | 109.00 |
C6—C5—H5A | 109.00 | H12A—C12—H12B | 109.00 |
C6—C5—H5B | 109.00 | H12A—C12—H12C | 110.00 |
C3—N1—C1—C2 | 164.9 (3) | C9—N2—C7—C8 | −69.6 (4) |
C5—N1—C1—C2 | −66.1 (4) | C11—N2—C7—C8 | 165.0 (3) |
C1—N1—C3—C4 | −176.6 (3) | C7—N2—C9—C10 | 167.1 (3) |
C5—N1—C3—C4 | 54.5 (4) | C11—N2—C9—C10 | −67.4 (4) |
C1—N1—C5—C6 | −66.3 (4) | C7—N2—C11—C12 | −69.5 (4) |
C3—N1—C5—C6 | 61.4 (4) | C9—N2—C11—C12 | 165.8 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···Br4 | 0.94 (3) | 2.44 (3) | 3.367 (3) | 166 (3) |
N2—H2···Br3i | 0.81 (4) | 2.58 (4) | 3.380 (3) | 171 (3) |
C7—H7B···Br3ii | 0.97 | 2.92 | 3.791 (5) | 150 |
C9—H9B···Br1iii | 0.97 | 2.84 | 3.715 (5) | 150 |
Symmetry codes: (i) x−1/2, y, −z+1/2; (ii) x−1, y, z; (iii) −x+3/2, y+1/2, z. |
Acknowledgements
The authors acknowledge the Cheikh Anta Diop University of Dakar (Sénégal) and the University of Freiberg (Germany) for financial support. The authors are grateful to Dr A. G. Oliver (University of Notre Dame-Notre Dame, USA) for helpful discussions.
References
Coppens, P. (1970). In Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255–270. Copenhagen: Munksgaard. Google Scholar
Diop, M. B., Diop, L., Plasseraud, L. & Maris, T. (2016). Acta Cryst. E72, 355–357. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hamdouni, M., Walha, S., Van Der Lee, A. & Kabadou, A. (2015). Inorg. Chem. Commun. 60, 97–102. CSD CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Mauthner, K., Schmid, R., Kirchner, K. & Mereiter, K. (1999). Monatsh. Chem. 130, 845–853. CAS Google Scholar
Mouchaham, G., Gualino, M., Roques, N., Duhayon, C., Brandès, S. & Sutter, J.-P. (2015). CrystEngComm, 17, 8906–8914. CSD CrossRef CAS Google Scholar
Sarr, M., Merkens, C., Diassé-Sarr, A., Diop, L. & Englert, U. (2014). Acta Cryst. E70, m220–m221. CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (2009). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.