metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bis(tri­ethyl­ammonium) tetra­bromido­zincate

aLaboratoire de Chimie Minérale et Analytique, Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, and bInstitute of Inorganic Chemistry, TU Bergakademie Freiberg, Leipziger Strasse 29, D-09596 Freiberg, Germany
*Correspondence e-mail: dlibasse@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 8 August 2016; accepted 16 August 2016; online 19 August 2016)

The title mol­ecular salt, (C6H16N)[ZnBr4], consists of a tetra­hedral tetra­bromido­zincate dianion and two tri­ethyl­ammonium cations linked by N—H⋯Br hydrogen bonds. In the crystal, these three-membered units are linked via C—H⋯Br hydrogen bonds, forming layers parallel to the ab plane.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Many authors worldwide have synthesized ammonium salts of numerous acids for different purposes (Mouchaham et al., 2015[Mouchaham, G., Gualino, M., Roques, N., Duhayon, C., Brandès, S. & Sutter, J.-P. (2015). CrystEngComm, 17, 8906-8914.]; Hamdouni et al., 2015[Hamdouni, M., Walha, S., Van Der Lee, A. & Kabadou, A. (2015). Inorg. Chem. Commun. 60, 97-102.]). A heterodinuclear complex containing [ZnBr4]2− and tri­ethyl­ammonium ions with an Ru component has been reported (Mauthner et al., 1999[Mauthner, K., Schmid, R., Kirchner, K. & Mereiter, K. (1999). Monatsh. Chem. 130, 845-853.]). The Senegalese group has used amines such as di­propyl­amine, diiso­propyl­amine, mono­cyclo­hexyl­amine, di­cyclo­hexyl­amine, di­butyl­amine, methyl-2-imidazole, ethyl­endi­amine for obtaining the corresponding salts with sulfuric, oxalic and sulfonic acids and have reacted theirs salts with stannic organo- or halidostannate compounds or transition metal halides (Sarr et al., 2014[Sarr, M., Merkens, C., Diassé-Sarr, A., Diop, L. & Englert, U. (2014). Acta Cryst. E70, m220-m221.]; Diop et al., 2016[Diop, M. B., Diop, L., Plasseraud, L. & Maris, T. (2016). Acta Cryst. E72, 355-357.]). In this context, (Et3NH)2·C2O4 has been allowed to react in ethanol with ZnBr2 and crystals of the title mol­ecular salt were obtained.

The mol­ecular structure of the title mol­ecular salt is shown in Fig. 1[link]. It consists of a tetra­hedral [ZnBr4]2− dianion and two tri­ethyl­ammonium ions linked by N—H⋯Br hydrogen bonds (Table 1[link]). The four Br atoms are non-equivalent; their distances range from 2.3945 (13) to 2.4408 (14) Å. Two of the Br atoms, Br3 and Br4, are involved in hydrogen bonds (Fig. 1[link] and Table 1[link]) and their distances to the Zn atom are 2.4408 (14) and 2.4228 (13) Å, respectively. Atoms Br1 and Br2, which are not involved in N—H⋯Br hydrogen bonding, have shorter Zn—Br bond lengths [2.3945 (13) and 2.3947 (13) Å, respectively]. The Br—Zn—Br angles vary from 107.20 (2) to 112.91 (2)°, indicating a slightly distorted tetra­hedron around the Zn atom with a τ4 geometry index of 0.95 (for a perfect tetra­hedron τ4 is equal to 1; Yang et al., 2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Br4 0.94 (3) 2.44 (3) 3.367 (3) 166 (3)
N2—H2⋯Br3i 0.81 (4) 2.58 (4) 3.380 (3) 171 (3)
C7—H7B⋯Br3ii 0.97 2.92 3.791 (5) 150
C9—H9B⋯Br1iii 0.97 2.84 3.715 (5) 150
Symmetry codes: (i) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (ii) x-1, y, z; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z].
[Figure 1]
Figure 1
A view of the mol­ecular structure of the title mol­ecular salt, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The N—H⋯Br hydrogen bonds are shown as dashed lines (see Table 1[link]). [Symmetry code: (i) x + [{1\over 2}], y, −z + [{1\over 2}].]

In the crystal, the (Et3NH)2·ZnBr4 hydrogen-bonded species are connected to their neighbours through C—H⋯Br hydrogen bonds, forming layers parallel to the ab plane (Table 1[link] and Fig. 2[link]).

[Figure 2]
Figure 2
A view along the c axis of the crystal packing of the title mol­ecular salt. Hydrogen bonds are shown as dashed lines (see Table 1[link]) and H atoms not involved in these inter­actions have been omitted for clarity.

Synthesis and crystallization

Oxalic acid was totally neutralized with Et3NH in water giving (Et3NH)2C2O4, which was then mixed with ZnBr2 in ethanol in a 1:1 ratio. A white precipitate was obtained and filtered. The filtrate was allowed to evaporate slowly at room temperature giving colourless crystals of the title mol­ecular salt, suitable for X-ray diffraction analysis.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula (C6H16N)2[ZnBr4]
Mr 589.40
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 150
a, b, c (Å) 12.383 (6), 13.145 (6), 26.510 (11)
V3) 4315 (4)
Z 8
Radiation type Mo Kα
μ (mm−1) 8.54
Crystal size (mm) 0.5 × 0.2 × 0.1
 
Data collection
Diffractometer Stoe IPDS 2T
Absorption correction Integration (Coppens, 1970[Coppens, P. (1970). In Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255-270. Copenhagen: Munksgaard.])
Tmin, Tmax 0.074, 0.135
No. of measured, independent and observed [I > 2σ(I)] reflections 35899, 4604, 3820
Rint 0.066
(sin θ/λ)max−1) 0.635
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.045, 1.02
No. of reflections 4597
No. of parameters 186
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.69, −0.54
Computer programs: X-AREA (Stoe & Cie, 2009[Stoe & Cie (2009). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]), X-RED (Stoe & Cie, 2009[Stoe & Cie (2009). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: X-AREA (Stoe & Cie, 2009); cell refinement: X-AREA (Stoe & Cie, 2009); data reduction: X-RED (Stoe & Cie, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Bis(triethylammonium) tetrabromidozincate top
Crystal data top
(C6H16N)2[ZnBr4]Dx = 1.814 Mg m3
Mr = 589.40Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 707 reflections
a = 12.383 (6) Åθ = 2.8–24.4°
b = 13.145 (6) ŵ = 8.54 mm1
c = 26.510 (11) ÅT = 150 K
V = 4315 (4) Å3Plate, colourless
Z = 80.5 × 0.2 × 0.1 mm
F(000) = 2304
Data collection top
Stoe IPDS 2T
diffractometer
4604 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus3820 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.066
combination of /w– and /f–scansθmax = 26.8°, θmin = 2.4°
Absorption correction: integration
(Coppens, 1970)
h = 1515
Tmin = 0.074, Tmax = 0.135k = 1616
35899 measured reflectionsl = 3331
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: mixed
wR(F2) = 0.045H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0131P)2 + 0.7809P]
where P = (Fo2 + 2Fc2)/3
4597 reflections(Δ/σ)max = 0.001
186 parametersΔρmax = 0.69 e Å3
0 restraintsΔρmin = 0.54 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.07931 (3)0.07296 (3)0.37735 (2)0.0331 (1)
Br20.77855 (3)0.15351 (3)0.41392 (2)0.0375 (1)
Br30.90854 (3)0.23837 (3)0.28535 (2)0.0347 (1)
Br41.01299 (3)0.35305 (3)0.41642 (2)0.0454 (1)
Zn10.94409 (3)0.20302 (3)0.37420 (2)0.0270 (1)
N10.8953 (2)0.2988 (2)0.52772 (10)0.0266 (8)
C10.8993 (3)0.1880 (2)0.54246 (13)0.0300 (10)
C21.0072 (3)0.1401 (3)0.53058 (14)0.0406 (11)
C30.7812 (2)0.3369 (3)0.52691 (14)0.0323 (10)
C40.7718 (3)0.4452 (3)0.50953 (15)0.0417 (12)
C50.9698 (3)0.3640 (3)0.55787 (15)0.0379 (11)
C60.9399 (4)0.3717 (3)0.61273 (15)0.0600 (14)
N20.2290 (2)0.4253 (2)0.23986 (11)0.0305 (9)
C70.1726 (3)0.3843 (4)0.28569 (14)0.0487 (13)
C80.2462 (3)0.3374 (3)0.32364 (13)0.0419 (13)
C90.2943 (3)0.5177 (3)0.25324 (16)0.0470 (12)
C100.3711 (3)0.5483 (4)0.21273 (17)0.0563 (16)
C110.1516 (3)0.4464 (3)0.19735 (14)0.0390 (11)
C120.1047 (3)0.3521 (3)0.17426 (14)0.0407 (12)
H10.918 (3)0.308 (2)0.4941 (12)0.023 (8)*
H1A0.842900.151500.524700.0360*
H1B0.885300.181900.578300.0360*
H2A1.021300.145600.495100.0610*
H2B1.005900.069600.540100.0610*
H2C1.063000.174500.549000.0610*
H3A0.751000.331300.560600.0390*
H3B0.738800.293900.504700.0390*
H4A0.800900.489600.534900.0620*
H4B0.697200.461400.503900.0620*
H4C0.811400.453800.478700.0620*
H5A0.970600.431800.543400.0460*
H5B1.042400.336700.555300.0460*
H6A0.867300.396700.615700.0900*
H6B0.988400.417700.629400.0900*
H6C0.944800.305700.628100.0900*
H20.271 (3)0.382 (3)0.2304 (13)0.027 (10)*
H7A0.133100.439200.301700.0580*
H7B0.120400.333600.275000.0580*
H8A0.287800.284600.307900.0630*
H8B0.204300.309000.350700.0630*
H8C0.294000.388400.336800.0630*
H9A0.245600.573900.260000.0560*
H9B0.334600.504100.283900.0560*
H10A0.411900.490100.202000.0840*
H10B0.419400.599400.225400.0840*
H10C0.331500.575200.184600.0840*
H11A0.093200.488500.209900.0470*
H11B0.189000.484700.171400.0470*
H12A0.162000.310200.161400.0610*
H12B0.057200.370600.147200.0610*
H12C0.065100.315200.199400.0610*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0319 (2)0.0318 (2)0.0355 (2)0.0054 (2)0.0045 (2)0.0037 (2)
Br20.0293 (2)0.0476 (2)0.0356 (2)0.0069 (2)0.0061 (1)0.0024 (2)
Br30.0343 (2)0.0374 (2)0.0324 (2)0.0045 (2)0.0021 (2)0.0077 (2)
Br40.0590 (2)0.0294 (2)0.0479 (2)0.0174 (2)0.0234 (2)0.0132 (2)
Zn10.0272 (2)0.0244 (2)0.0294 (2)0.0007 (2)0.0036 (2)0.0002 (2)
N10.0255 (14)0.0247 (14)0.0297 (14)0.0031 (12)0.0046 (11)0.0023 (12)
C10.0351 (18)0.0218 (17)0.0331 (17)0.0007 (15)0.0026 (14)0.0016 (14)
C20.046 (2)0.034 (2)0.0419 (19)0.0124 (18)0.0048 (17)0.0007 (18)
C30.0246 (16)0.0295 (19)0.0429 (19)0.0007 (15)0.0031 (15)0.0050 (16)
C40.034 (2)0.036 (2)0.055 (2)0.0075 (17)0.0011 (17)0.0007 (19)
C50.0260 (17)0.0247 (19)0.063 (2)0.0015 (15)0.0083 (16)0.0043 (18)
C60.090 (3)0.040 (2)0.050 (2)0.006 (2)0.033 (2)0.006 (2)
N20.0283 (15)0.0290 (16)0.0341 (16)0.0002 (14)0.0049 (12)0.0020 (13)
C70.0312 (18)0.074 (3)0.041 (2)0.001 (2)0.0059 (17)0.002 (2)
C80.0378 (19)0.053 (3)0.0350 (17)0.0027 (19)0.0076 (17)0.0070 (19)
C90.049 (2)0.041 (2)0.051 (2)0.0059 (19)0.0137 (19)0.005 (2)
C100.046 (2)0.056 (3)0.067 (3)0.021 (2)0.015 (2)0.020 (2)
C110.0360 (19)0.036 (2)0.045 (2)0.0021 (17)0.0153 (17)0.0002 (17)
C120.042 (2)0.038 (2)0.042 (2)0.0006 (19)0.0147 (16)0.0030 (18)
Geometric parameters (Å, º) top
Br1—Zn12.3945 (13)C5—H5B0.9700
Br2—Zn12.3947 (13)C5—H5A0.9700
Br3—Zn12.4408 (14)C6—H6B0.9600
Br4—Zn12.4228 (13)C6—H6C0.9600
N1—C51.492 (5)C6—H6A0.9600
N1—C11.509 (4)N2—H20.81 (4)
N1—C31.499 (4)C7—C81.491 (5)
N1—H10.94 (3)C9—C101.490 (6)
C1—C21.510 (5)C11—C121.500 (6)
C3—C41.501 (6)C7—H7A0.9700
C5—C61.504 (6)C7—H7B0.9700
C1—H1A0.9700C8—H8C0.9600
C1—H1B0.9700C8—H8A0.9600
C2—H2B0.9600C8—H8B0.9600
C2—H2C0.9600C9—H9B0.9700
C2—H2A0.9600C9—H9A0.9700
N2—C111.505 (5)C10—H10A0.9600
N2—C71.501 (5)C10—H10B0.9600
N2—C91.502 (5)C10—H10C0.9600
C3—H3A0.9700C11—H11A0.9700
C3—H3B0.9700C11—H11B0.9700
C4—H4C0.9600C12—H12B0.9600
C4—H4A0.9600C12—H12C0.9600
C4—H4B0.9600C12—H12A0.9600
Br1—Zn1—Br3107.20 (2)H6A—C6—H6C109.00
Br1—Zn1—Br4108.59 (2)C5—C6—H6C110.00
Br2—Zn1—Br3108.77 (2)H6A—C6—H6B109.00
Br2—Zn1—Br4108.64 (2)C5—C6—H6B109.00
Br3—Zn1—Br4110.75 (2)H6B—C6—H6C110.00
Br1—Zn1—Br2112.91 (2)C5—C6—H6A109.00
C1—N1—C5113.3 (3)C11—N2—H2108 (2)
C1—N1—C3110.9 (3)C7—N2—H2107 (3)
C3—N1—C5113.5 (3)C9—N2—H2107 (3)
C1—N1—H1111.0 (16)N2—C7—C8114.2 (3)
N1—C1—C2112.2 (3)N2—C9—C10113.1 (3)
C3—N1—H1103 (2)N2—C11—C12113.6 (3)
C5—N1—H1104 (2)N2—C7—H7B109.00
N1—C3—C4113.2 (3)N2—C7—H7A109.00
N1—C5—C6113.9 (3)C8—C7—H7A109.00
C2—C1—H1B109.00C8—C7—H7B109.00
H1A—C1—H1B108.00H7A—C7—H7B108.00
N1—C1—H1A109.00H8A—C8—H8B109.00
N1—C1—H1B109.00H8A—C8—H8C109.00
C2—C1—H1A109.00H8B—C8—H8C109.00
C7—N2—C9110.5 (3)C7—C8—H8A109.00
C1—C2—H2A110.00C7—C8—H8B110.00
C1—C2—H2B109.00C7—C8—H8C109.00
C1—C2—H2C110.00C10—C9—H9A109.00
H2A—C2—H2B109.00N2—C9—H9A109.00
H2A—C2—H2C109.00N2—C9—H9B109.00
H2B—C2—H2C109.00C10—C9—H9B109.00
C7—N2—C11112.1 (3)H9A—C9—H9B108.00
C9—N2—C11111.8 (3)C9—C10—H10B110.00
N1—C3—H3A109.00C9—C10—H10A110.00
C4—C3—H3B109.00H10A—C10—H10B109.00
N1—C3—H3B109.00H10A—C10—H10C109.00
C4—C3—H3A109.00C9—C10—H10C109.00
H3A—C3—H3B108.00H10B—C10—H10C109.00
H4B—C4—H4C109.00C12—C11—H11A109.00
C3—C4—H4C109.00C12—C11—H11B109.00
H4A—C4—H4B110.00N2—C11—H11A109.00
H4A—C4—H4C109.00N2—C11—H11B109.00
C3—C4—H4B109.00H11A—C11—H11B108.00
C3—C4—H4A109.00H12B—C12—H12C110.00
N1—C5—H5B109.00C11—C12—H12A109.00
N1—C5—H5A109.00C11—C12—H12B109.00
H5A—C5—H5B108.00C11—C12—H12C109.00
C6—C5—H5A109.00H12A—C12—H12B109.00
C6—C5—H5B109.00H12A—C12—H12C110.00
C3—N1—C1—C2164.9 (3)C9—N2—C7—C869.6 (4)
C5—N1—C1—C266.1 (4)C11—N2—C7—C8165.0 (3)
C1—N1—C3—C4176.6 (3)C7—N2—C9—C10167.1 (3)
C5—N1—C3—C454.5 (4)C11—N2—C9—C1067.4 (4)
C1—N1—C5—C666.3 (4)C7—N2—C11—C1269.5 (4)
C3—N1—C5—C661.4 (4)C9—N2—C11—C12165.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Br40.94 (3)2.44 (3)3.367 (3)166 (3)
N2—H2···Br3i0.81 (4)2.58 (4)3.380 (3)171 (3)
C7—H7B···Br3ii0.972.923.791 (5)150
C9—H9B···Br1iii0.972.843.715 (5)150
Symmetry codes: (i) x1/2, y, z+1/2; (ii) x1, y, z; (iii) x+3/2, y+1/2, z.
 

Acknowledgements

The authors acknowledge the Cheikh Anta Diop University of Dakar (Sénégal) and the University of Freiberg (Germany) for financial support. The authors are grateful to Dr A. G. Oliver (University of Notre Dame-Notre Dame, USA) for helpful discussions.

References

First citationCoppens, P. (1970). In Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255–270. Copenhagen: Munksgaard.  Google Scholar
First citationDiop, M. B., Diop, L., Plasseraud, L. & Maris, T. (2016). Acta Cryst. E72, 355–357.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHamdouni, M., Walha, S., Van Der Lee, A. & Kabadou, A. (2015). Inorg. Chem. Commun. 60, 97–102.  CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMauthner, K., Schmid, R., Kirchner, K. & Mereiter, K. (1999). Monatsh. Chem. 130, 845–853.  CAS Google Scholar
First citationMouchaham, G., Gualino, M., Roques, N., Duhayon, C., Brandès, S. & Sutter, J.-P. (2015). CrystEngComm, 17, 8906–8914.  CSD CrossRef CAS Google Scholar
First citationSarr, M., Merkens, C., Diassé-Sarr, A., Diop, L. & Englert, U. (2014). Acta Cryst. E70, m220–m221.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2009). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds