organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(E)-3-(2,5-Di­fluoro­phen­yl)-1-phenyl­prop-2-en-1-one

aDepartamento de Química, Instituto de Ciências Exatas, Universidade Federal Rural do Rio de Janeiro, 23851-970 Seropédica, RJ, Brazil, bUniversidade Federal Fluminense, Instituto de Física, Lab LDRX-UFF, 24210-346 Niterói, RJ, Brazil, cUniversidade Federal Fluminense, Departamento de Química Orgânica, Programa de Pós-Graduação em Química, 24020-141 Niterói, RJ, Brazil, and dDivisão de Metrologia Química, LAMOC, Instituto Nacional de Metrologia, Qualidade e Tecnologia, INMETRO, Av. N. Sra. das Graças, 50, 25250-020 Duque de Caxias, RJ, Brazil
*Correspondence e-mail: cesarinsobrinho@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 29 July 2016; accepted 10 August 2016; online 16 August 2016)

The title chalcone derivative, C15H10F2O, is almost planar, with the benzene ring being inclined to the phenyl ring by 7.45 (9)°. The conformation about the C=C bond is E. In the crystal, mol­ecules are linked by two pairs of C—H⋯F hydrogen bonds, forming inversion dimers enclosing R22(8) and R21(10) ring motifs. The dimers stack along the a axis with the separation of the C=C bonds being 4.2926 (4) Å.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Chalcone is a generic term given to compounds having the 1,3-di­phenyl­prop-2-en-1-one moiety. They were the first isolatable compounds from flavonoid biosynthesis in plants (Bohm, 1998[Bohm, B. A. (1998). In Introduction to Flavonoids. UK: Harwood Academic Publishers.]; Yazdan et al., 2015[Yazdan, S. K., Sagar, D. V. & Shaik, A. B. (2015). Org. Med. Chem. Int. J. 1, 1-9.]) and are widely distributed in fruits, vegetables, spices, tea and soy-based foodstuffs. They have inter­esting pharmacological properties (Di Carlos et al., 1999[Di Carlos, G., Mascolo, N., Izzo, A. A. & Capasso, F. (1999). Life Sci. 65, 337-353.]; Das & Manna, 2016[Das, M. & Manna, K. (2016). J. Toxicol. Article ID7651047.]), including analgesic, anti­oxidant, anti­fungal, anti­bacterial, anti­protozoal, gastric `protectant', anti­mutagenic, anti­tumorogenic, anti-inflammatory (Yadav et al., 2011[Yadav, V. R., Prasad, S., Sung, B. & Aggarwal, B. B. (2011). Int. Immunopharmacol. 11, 295-309.]) and anti­neurodegeneration properties (Sahu et al., 2012[Sahu, N. K., Balbhadra, S. S., Choudhary, J. & Kohli, D. V. (2012). Curr. Med. Chem. 19, 209-225.]; Singh et al., 2014[Singh, P., Anand, A. & Kumar, V. (2014). Eur. J. Med. Chem. 85, 758-777.]). The title chalcone derivative was obtained by a Claisen–Schimdt condensation in a basic solution of ethanol and water between 2,5-di­fluoro­benzaldehyde and aceto­phenone.

The mol­ecular structure of the title compound is illustrated in Fig. 1[link]. The structure is almost planar, with the dihedral angle between the benzene (C1–C6) and phenyl (C10–C15) rings being 7.45 (9)°. The conformation of the keto group (C9=O1) with respect to the olefinic double bond (C7=C8) is cis. The conformation about the C7=C8 bond itself is E, with the 2,5-di­fluoro­benzene ring opposite to the phenyl ring.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

In the crystal, mol­ecules are linked by two pairs of C—H⋯F hydrogen bonds, forming inversion dimers enclosing R22(8) and R21(10) rings (Table 1[link] and Fig. 2[link]). The separation distances of bonds C7=C8⋯C7i=C8i [symmetry code: (i) 1 + x, y, z] of adjacent mol­ecules stacked along the a axis is 4.2926 (4) Å, with an angle of 52.0 (1)° (Fig. 3[link]). This distance is in the range for relevant distances enrolled in photochemical [2 + 2] cyclo­addition reactions between olefins (Sonoda, 2011[Sonoda, Y. (2011). Molecules, 16, 119-148.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯F1i 0.95 2.49 3.440 (2) 174
C11—H11⋯F1i 0.95 2.46 3.379 (2) 163
Symmetry code: (i) -x+2, -y+1, -z+1.
[Figure 2]
Figure 2
A view of the inversion dimers formed by two pairs of C—H⋯F hydrogen bonds (see Table 1[link]).
[Figure 3]
Figure 3
A view along the a axis of the crystal packing of the title compound. The C—H⋯F hydrogen bonds are shown as dashed lines (see Table 1[link]) and the olefin C atoms (C7 and C8) as grey balls.

Synthesis and crystallization

Potassium hydroxide in 10% molar (0.0026 g ml−1) concentration relative to the ketone was added to an ethanol–water (6:1) mixture. To this solution, the total amount of 2,5-di­fluoro­benzaldehyde (582 mg, 4.1 mmol) and half of the aceto­phenone (288 mg, 2.4 mmol) were added at room temperature. After approximately 1–2 h, the reminder of the aceto­phenone was added under constant stirring at 298 K, and the reaction was continued until the appearance of a yellow precipitate. The reaction mixture was filtered and the solid residue obtained was washed with cold water until a neutral pH was attained and was then recrystallized a number of times from a mixture of ethanol and water (yield 65%, m.p. 361–363 K). Yellow single crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution of the title compound (m.p. 363 K). Spectroscopic data: IR (KBr) ν (cm−1): 1674.3 (C=O s-cis); 1655.0 (C=O s-trans); 1610.9 (C=C s-cis). 1H NMR (500 MHz, CDCl3): δ 7.90–6.50 (m, 8H, aromatic); 7.83 (d, H7); 7.59 (d, H8). 13C NMR (125 MHz, CDCl3): δ 198.8 (C=O); 160.5 (dd, C2); 155.0 (dd, C5); 137.6 (C10); 135.9 (C7); 133.0 (C13); 128.6 (C14=C12); 128.5 (C15=C11); 125.3 (C8); 118.5 (d, C3); 117.9 (d, C4); 117.2 (d, C1). (MS m/z (%): 244 (M+., 100); 243 (29); 225 (36); 215 (18); 214 (5); 201 (7); 196 (11); 195 (6); 167 (42); 139 (29); 119 (36); 105 (67); 77 (82).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C15H10F2O
Mr 244.23
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 4.2926 (4), 17.7983 (13), 14.8522 (13)
β (°) 94.757 (4)
V3) 1130.81 (17)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.31 × 0.23 × 0.16
 
Data collection
Diffractometer Bruker D8 Venture
No. of measured, independent and observed [I > 2σ(I)] reflections 5621, 2322, 1740
Rint 0.052
(sin θ/λ)max−1) 0.626
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.136, 1.07
No. of reflections 2322
No. of parameters 163
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.32, −0.24
Computer programs: SAINT and APEX3 (Bruker, 2015[Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: SAINT (Bruker, 2015); cell refinement: APEX3 (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012), SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

(E)-3-(2,5-Difluorophenyl)-1-phenylprop-2-en-1-one top
Crystal data top
C15H10F2OF(000) = 504
Mr = 244.23Dx = 1.435 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3798 reflections
a = 4.2926 (4) Åθ = 2.7–26.4°
b = 17.7983 (13) ŵ = 0.11 mm1
c = 14.8522 (13) ÅT = 150 K
β = 94.757 (4)°Orthombic, colorless
V = 1130.81 (17) Å30.31 × 0.23 × 0.16 mm
Z = 4
Data collection top
Bruker D8 Venture
diffractometer
1740 reflections with I > 2σ(I)
Radiation source: Microfocus sealed tube, Incoatec IµsRint = 0.052
Quazar multilayer mirror monochromatorθmax = 26.4°, θmin = 2.3°
φ and ω scansh = 55
5621 measured reflectionsk = 2122
2322 independent reflectionsl = 1818
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.136 w = 1/[σ2(Fo2) + (0.0443P)2 + 0.290P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2322 reflectionsΔρmax = 0.32 e Å3
163 parametersΔρmin = 0.24 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F20.0822 (3)0.50588 (6)0.19482 (7)0.0330 (3)
F10.9771 (3)0.60432 (6)0.44588 (7)0.0351 (3)
O10.0788 (4)0.25342 (7)0.32124 (9)0.0367 (4)
C10.6528 (4)0.50652 (10)0.38831 (11)0.0229 (4)
H10.7390.47480.43540.027*
C50.3075 (4)0.52985 (10)0.25802 (11)0.0234 (4)
C60.4238 (4)0.47913 (10)0.32404 (11)0.0215 (4)
C100.3791 (4)0.21865 (10)0.45575 (11)0.0230 (4)
C20.7518 (4)0.57955 (10)0.38272 (12)0.0244 (4)
C90.2765 (5)0.27205 (10)0.38094 (12)0.0254 (4)
C30.6369 (5)0.62892 (10)0.31648 (12)0.0267 (4)
H30.71280.6790.31460.032*
C70.3066 (4)0.40188 (10)0.32591 (11)0.0241 (4)
H70.13680.38920.28350.029*
C40.4083 (4)0.60333 (10)0.25306 (12)0.0269 (4)
H40.32160.63570.20670.032*
C80.4166 (5)0.34818 (10)0.38147 (12)0.0269 (4)
H80.59120.35880.42310.032*
C150.2643 (5)0.14540 (11)0.45084 (13)0.0309 (5)
H150.12830.13040.40030.037*
C130.5437 (5)0.11552 (11)0.59271 (13)0.0330 (5)
H130.6010.08020.63920.04*
C110.5791 (5)0.23899 (11)0.53030 (12)0.0300 (5)
H110.66290.28840.53420.036*
C140.3461 (5)0.09438 (11)0.51866 (14)0.0360 (5)
H140.26660.04460.51450.043*
C120.6573 (5)0.18811 (12)0.59882 (13)0.0362 (5)
H120.78930.20310.65020.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F20.0354 (7)0.0304 (6)0.0309 (6)0.0010 (5)0.0107 (5)0.0019 (4)
F10.0362 (7)0.0324 (6)0.0351 (6)0.0080 (5)0.0070 (5)0.0000 (5)
O10.0482 (10)0.0251 (7)0.0343 (7)0.0044 (7)0.0123 (7)0.0008 (6)
C10.0244 (9)0.0224 (9)0.0217 (9)0.0036 (8)0.0018 (7)0.0033 (7)
C50.0218 (10)0.0251 (9)0.0229 (9)0.0033 (8)0.0006 (7)0.0012 (7)
C60.0223 (9)0.0198 (9)0.0228 (9)0.0028 (7)0.0041 (7)0.0003 (7)
C100.0247 (10)0.0187 (9)0.0261 (9)0.0022 (7)0.0050 (7)0.0007 (7)
C20.0210 (9)0.0266 (9)0.0253 (9)0.0011 (7)0.0005 (7)0.0016 (7)
C90.0300 (10)0.0207 (9)0.0254 (9)0.0012 (8)0.0012 (8)0.0031 (7)
C30.0283 (10)0.0210 (9)0.0317 (10)0.0009 (8)0.0079 (8)0.0024 (7)
C70.0259 (10)0.0229 (9)0.0233 (9)0.0013 (8)0.0006 (7)0.0022 (7)
C40.0287 (10)0.0243 (9)0.0279 (9)0.0043 (8)0.0033 (8)0.0078 (7)
C80.0279 (10)0.0236 (9)0.0284 (10)0.0007 (8)0.0022 (8)0.0009 (7)
C150.0334 (11)0.0238 (10)0.0346 (10)0.0041 (8)0.0017 (8)0.0011 (8)
C130.0355 (12)0.0285 (10)0.0356 (11)0.0057 (9)0.0055 (9)0.0113 (8)
C110.0387 (12)0.0205 (9)0.0304 (10)0.0025 (8)0.0007 (9)0.0003 (7)
C140.0416 (13)0.0214 (9)0.0455 (12)0.0014 (9)0.0059 (10)0.0050 (8)
C120.0438 (13)0.0325 (11)0.0310 (10)0.0018 (10)0.0056 (9)0.0037 (8)
Geometric parameters (Å, º) top
F2—C51.359 (2)C3—H30.95
F1—C21.364 (2)C7—C81.324 (3)
O1—C91.221 (2)C7—H70.95
C1—C21.372 (2)C4—H40.95
C1—C61.400 (2)C8—H80.95
C1—H10.95C15—C141.380 (3)
C5—C41.381 (3)C15—H150.95
C5—C61.394 (2)C13—C121.381 (3)
C6—C71.465 (2)C13—C141.384 (3)
C10—C111.391 (3)C13—H130.95
C10—C151.394 (3)C11—C121.383 (3)
C10—C91.500 (2)C11—H110.95
C2—C31.379 (3)C14—H140.95
C9—C81.482 (3)C12—H120.95
C3—C41.380 (3)
C2—C1—C6119.48 (16)C6—C7—H7117.1
C2—C1—H1120.3C3—C4—C5118.97 (16)
C6—C1—H1120.3C3—C4—H4120.5
F2—C5—C4117.93 (15)C5—C4—H4120.5
F2—C5—C6118.38 (16)C7—C8—C9122.22 (18)
C4—C5—C6123.69 (17)C7—C8—H8118.9
C5—C6—C1116.38 (16)C9—C8—H8118.9
C5—C6—C7121.15 (16)C14—C15—C10120.66 (18)
C1—C6—C7122.46 (16)C14—C15—H15119.7
C11—C10—C15118.51 (17)C10—C15—H15119.7
C11—C10—C9123.26 (16)C12—C13—C14119.74 (18)
C15—C10—C9118.23 (16)C12—C13—H13120.1
F1—C2—C1118.05 (16)C14—C13—H13120.1
F1—C2—C3118.42 (16)C12—C11—C10120.75 (18)
C1—C2—C3123.53 (17)C12—C11—H11119.6
O1—C9—C8120.61 (17)C10—C11—H11119.6
O1—C9—C10120.63 (16)C15—C14—C13120.22 (18)
C8—C9—C10118.75 (16)C15—C14—H14119.9
C2—C3—C4117.93 (17)C13—C14—H14119.9
C2—C3—H3121C13—C12—C11120.10 (19)
C4—C3—H3121C13—C12—H12120
C8—C7—C6125.74 (17)C11—C12—H12120
C8—C7—H7117.1
F2—C5—C6—C1179.29 (15)C1—C6—C7—C86.1 (3)
C4—C5—C6—C10.7 (3)C2—C3—C4—C50.6 (3)
F2—C5—C6—C70.2 (3)F2—C5—C4—C3179.97 (16)
C4—C5—C6—C7179.81 (16)C6—C5—C4—C30.0 (3)
C2—C1—C6—C50.8 (2)C6—C7—C8—C9177.78 (16)
C2—C1—C6—C7179.88 (16)O1—C9—C8—C79.3 (3)
C6—C1—C2—F1179.43 (15)C10—C9—C8—C7169.86 (17)
C6—C1—C2—C30.2 (3)C11—C10—C15—C140.3 (3)
C11—C10—C9—O1173.28 (18)C9—C10—C15—C14178.73 (19)
C15—C10—C9—O15.7 (3)C15—C10—C11—C121.3 (3)
C11—C10—C9—C85.9 (3)C9—C10—C11—C12177.74 (19)
C15—C10—C9—C8175.08 (17)C10—C15—C14—C130.1 (3)
F1—C2—C3—C4179.81 (16)C12—C13—C14—C150.4 (3)
C1—C2—C3—C40.6 (3)C14—C13—C12—C111.4 (3)
C5—C6—C7—C8174.89 (18)C10—C11—C12—C131.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···F1i0.952.493.440 (2)174
C11—H11···F1i0.952.463.379 (2)163
Symmetry code: (i) x+2, y+1, z+1.
 

Acknowledgements

The authors gratefully acknowledge the financial support and fellowships awarded by the Brazilian funding agencies FAPERJ, CAPES and CNPq. We would also like to thank the LDRX/UFF for the use of X-ray facilities.

References

First citationBohm, B. A. (1998). In Introduction to Flavonoids. UK: Harwood Academic Publishers.  Google Scholar
First citationBruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDas, M. & Manna, K. (2016). J. Toxicol. Article ID7651047.  Google Scholar
First citationDi Carlos, G., Mascolo, N., Izzo, A. A. & Capasso, F. (1999). Life Sci. 65, 337–353.  PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSahu, N. K., Balbhadra, S. S., Choudhary, J. & Kohli, D. V. (2012). Curr. Med. Chem. 19, 209–225.  Web of Science CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, P., Anand, A. & Kumar, V. (2014). Eur. J. Med. Chem. 85, 758–777.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSonoda, Y. (2011). Molecules, 16, 119–148.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYadav, V. R., Prasad, S., Sung, B. & Aggarwal, B. B. (2011). Int. Immunopharmacol. 11, 295–309.  Web of Science CrossRef CAS PubMed Google Scholar
First citationYazdan, S. K., Sagar, D. V. & Shaik, A. B. (2015). Org. Med. Chem. Int. J. 1, 1–9.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds