organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

N-{(Z)-3-Oxo-3-[(E)-(pyridin-2-ylmeth­yl)diazen­yl]-1-(thio­phen-2-yl)prop-1-en-2-yl}benzamide

aX-ray Crystallography Laboratory, Post-Graduate Department of Physics & Electronics, University of Jammu, Jammu Tawi 180 006, India, bDepartment of Chemistry, Mangalore University, Mangalagangothri 574 199, Mangalore, India, and cDepartment of Studies in Chemistry–Industrial Chemistry, Mangalore University, Mangalagangothri 574 199, India
*Correspondence e-mail: rkant.ju@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 28 July 2016; accepted 8 August 2016; online 12 August 2016)

In the title compound, C20H16N4O2S, the thio­phene ring subtends dihedral angles of 58.6 (3) and 9.8 (3)° with the benzamide and pyridine rings, respectively, whereas these two rings are inclined to one another by 59.3 (3)°. There is an intra­molecular C—H⋯π inter­action present involving the pyridine and benzamide rings. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds, forming chains along the [010] direction. The chains are linked by C—H⋯S hydrogen bonds and C—H⋯π inter­actions, forming sheets parallel to the ab plane.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Azo compounds have a (–N=N–) linkage, and are highly coloured compounds. They are used as dyes and pigments for colouring fibers, optical storage devices, photo-electronic applications, printing systems, textile dyes etc (Wang et al., 2000[Wang, S., Shen, S. & Xu, H. (2000). Dyes Pigments, 44, 195-198.]). The title compound is initially a hydrazone formed by the reaction of the precursor hydrazide 1 with pyridine 2-aldehyde (see Scheme). However, it rearranges to a diazo derivative by a 1,3 proton shift. Herein, we report on the crystal structure of compound 2, containing a diazo (–N=N–) linkage.

In the title compound, Fig. 1[link], the thio­phene ring forms a dihedral angle 9.8 (3)° with the pyridine ring. The benzamide ring is inclined to the thio­phene and pyridine rings by 58.6 (3) and 59.3 (3)°, respectively. The mol­ecule has an E conformation about the N1=N2 bond, and a Z conformation about the C5=C6 bond. There is an intra­molecular C—H⋯π inter­action present involving the pyridine and benzamide rings (Fig. 1[link] and Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg3 are the centroids of rings N3/C9–C13 and C15–C20, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯O1i 0.86 2.18 2.931 (6) 145
C8—H8B⋯S1ii 0.97 2.68 3.492 (5) 141
C10—H10⋯Cg3 0.93 2.89 3.627 (6) 137
C12—H12⋯Cg2ii 0.93 2.92 3.648 (6) 136
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+2]; (ii) x+1, y, z.
[Figure 1]
Figure 1
A view of the mol­ecular structure of the title compound 2, showing the atom labelling. Displacement ellipsoids are drawn at the 40% probability level. The intra­molecular C—H⋯π inter­action is shown as a blue dashed arrow (see Table 1[link]).

In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds forming chains along the b-axis direction (Fig. 2[link] and Table 1[link]). The chains are linked by C—H⋯S hydrogen bonds and C—H⋯π inter­actions, forming sheets parallel to the ab plane (Fig. 2[link] and Table 1[link]).

[Figure 2]
Figure 2
The crystal packing of the title compound 2, viewed along the a axis. The N—H⋯O and C—H⋯S hydrogen bonds are shown as dashed lines (see Table 1[link]). For clarity, only the H atoms involved in the various intra- and inter­molecular inter­actions have been included.

Synthesis and crystallization

A mixture of [3-hydrazinyl-3-oxo-1-(thio­phen-2-yl)prop-1-en-2-yl]benzamide 1 (2.87 g, 0.01 mol), and pyridine-2-carbaldehyde (1.07 g, 0.01 mol) in 20 ml ethanol were stirred for 3–4 h. The solid obtained was filtered, washed with cold water, dried and recrystallized from ethanol. Single crystals of 2 were grown from a methanol–1,4-dioxane (1:1) mixture by slow evaporation (m.p. 507–508 K).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C20H16N4O2S
Mr 376.43
Crystal system, space group Monoclinic, P21
Temperature (K) 293
a, b, c (Å) 9.3289 (10), 9.9031 (10), 9.8984 (12)
β (°) 97.221 (11)
V3) 907.21 (17)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.20
Crystal size (mm) 0.30 × 0.20 × 0.20
 
Data collection
Diffractometer Oxford Diffraction Xcalibur Sapphire3
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.])
Tmin, Tmax 0.749, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 3602, 2547, 1807
Rint 0.057
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.137, 0.98
No. of reflections 2547
No. of parameters 244
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.30, −0.27
Computer programs: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

N-{(Z)-3-Oxo-3-[(E)-(pyridin-2-ylmethyl)diazenyl]-1-(thiophen-2-yl)prop-1-en-2-yl}benzamide top
Crystal data top
C20H16N4O2SF(000) = 392
Mr = 376.43Dx = 1.378 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 985 reflections
a = 9.3289 (10) Åθ = 4.4–26.3°
b = 9.9031 (10) ŵ = 0.20 mm1
c = 9.8984 (12) ÅT = 293 K
β = 97.221 (11)°Rectangular, brown
V = 907.21 (17) Å30.30 × 0.20 × 0.20 mm
Z = 2
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
2547 independent reflections
Radiation source: fine-focus sealed tube1807 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
Detector resolution: 16.1049 pixels mm-1θmax = 26.0°, θmin = 3.5°
ω scansh = 911
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
k = 612
Tmin = 0.749, Tmax = 1.000l = 1112
3602 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0485P)2]
where P = (Fo2 + 2Fc2)/3
2547 reflections(Δ/σ)max = 0.001
244 parametersΔρmax = 0.30 e Å3
1 restraintΔρmin = 0.27 e Å3
Special details top

Experimental. CrysAlis Pro (Oxford Diffraction, 2010)

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.53359 (14)0.16714 (15)1.01498 (14)0.0554 (4)
N11.0902 (4)0.3655 (4)1.0744 (4)0.0444 (10)
N40.8437 (4)0.2341 (4)1.1093 (4)0.0397 (9)
H40.85680.14851.10210.048*
O20.7951 (5)0.4099 (3)1.2397 (4)0.0637 (11)
O10.9821 (4)0.4880 (4)0.8927 (4)0.0664 (11)
N21.2188 (5)0.4370 (4)1.0774 (4)0.0493 (11)
N31.2102 (4)0.2226 (4)1.2834 (4)0.0473 (11)
C91.3313 (5)0.2957 (5)1.2705 (5)0.0446 (12)
C81.3214 (5)0.4001 (5)1.1653 (5)0.0484 (13)
H8A1.35090.48221.21450.058*
H8B1.39930.37881.11250.058*
C40.5869 (5)0.2766 (5)0.8944 (5)0.0470 (12)
C150.8350 (5)0.1983 (5)1.3518 (5)0.0401 (11)
C140.8217 (5)0.2889 (5)1.2308 (5)0.0425 (12)
C70.9768 (5)0.3999 (5)0.9807 (5)0.0421 (12)
C160.8130 (5)0.0601 (5)1.3426 (5)0.0464 (12)
H160.78670.01981.25830.056*
C50.7281 (6)0.3345 (5)0.8987 (5)0.0499 (13)
H50.74130.39010.82560.060*
C60.8447 (5)0.3205 (5)0.9930 (5)0.0408 (11)
C200.8724 (5)0.2558 (6)1.4772 (5)0.0500 (13)
H200.88370.34891.48420.060*
C111.3428 (6)0.1005 (6)1.4664 (6)0.0637 (16)
H111.34490.03421.53320.076*
C131.4587 (6)0.2743 (6)1.3537 (6)0.0564 (14)
H131.53980.32601.34360.068*
C170.8305 (6)0.0174 (6)1.4596 (6)0.0602 (15)
H170.81290.10981.45410.072*
C10.3663 (6)0.1528 (6)0.9289 (6)0.0634 (16)
H10.29470.09850.95780.076*
C30.4727 (6)0.3004 (6)0.7921 (6)0.0612 (15)
H30.47810.35720.71800.073*
C101.2185 (6)0.1270 (5)1.3791 (6)0.0559 (15)
H101.13650.07571.38750.067*
C190.8932 (5)0.1783 (7)1.5915 (5)0.0640 (16)
H190.92110.21841.67570.077*
C180.8731 (6)0.0402 (6)1.5827 (6)0.0633 (16)
H180.88870.01301.66050.076*
C121.4648 (6)0.1767 (8)1.4506 (6)0.0671 (16)
H121.55080.16081.50670.081*
C20.3467 (6)0.2271 (7)0.8149 (7)0.0764 (19)
H20.26020.23040.75700.092*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0574 (8)0.0551 (8)0.0545 (8)0.0009 (7)0.0105 (7)0.0024 (7)
N10.040 (2)0.045 (2)0.048 (3)0.004 (2)0.0056 (19)0.003 (2)
N40.049 (2)0.035 (2)0.036 (2)0.0003 (18)0.0091 (19)0.0022 (18)
O20.102 (3)0.0386 (19)0.051 (2)0.020 (2)0.012 (2)0.0004 (19)
O10.063 (2)0.068 (3)0.066 (3)0.020 (2)0.002 (2)0.028 (2)
N20.048 (3)0.046 (3)0.055 (3)0.005 (2)0.012 (2)0.008 (2)
N30.045 (2)0.046 (2)0.050 (3)0.003 (2)0.004 (2)0.006 (2)
C90.043 (3)0.049 (3)0.043 (3)0.003 (2)0.012 (2)0.000 (3)
C80.044 (3)0.053 (3)0.050 (3)0.002 (2)0.014 (3)0.005 (3)
C40.051 (3)0.050 (3)0.040 (3)0.004 (3)0.003 (2)0.001 (2)
C150.037 (2)0.046 (3)0.040 (3)0.003 (2)0.011 (2)0.009 (2)
C140.044 (3)0.039 (3)0.044 (3)0.001 (2)0.002 (2)0.004 (2)
C70.043 (3)0.042 (3)0.042 (3)0.007 (2)0.008 (2)0.007 (2)
C160.047 (3)0.044 (3)0.048 (3)0.001 (2)0.007 (2)0.006 (3)
C50.060 (3)0.050 (3)0.039 (3)0.000 (3)0.006 (3)0.002 (3)
C60.050 (3)0.041 (3)0.032 (2)0.002 (2)0.007 (2)0.005 (2)
C200.052 (3)0.056 (3)0.043 (3)0.000 (3)0.006 (2)0.002 (3)
C110.060 (4)0.068 (4)0.061 (4)0.008 (3)0.002 (3)0.016 (3)
C130.043 (3)0.073 (4)0.052 (3)0.004 (3)0.000 (3)0.000 (3)
C170.057 (3)0.062 (4)0.062 (4)0.005 (3)0.011 (3)0.026 (3)
C10.058 (3)0.060 (4)0.072 (4)0.009 (3)0.007 (3)0.005 (4)
C30.055 (3)0.066 (4)0.059 (4)0.005 (3)0.006 (3)0.006 (3)
C100.057 (3)0.048 (3)0.064 (4)0.001 (3)0.011 (3)0.010 (3)
C190.063 (3)0.094 (5)0.036 (3)0.005 (4)0.008 (3)0.006 (3)
C180.063 (4)0.069 (4)0.059 (4)0.001 (3)0.011 (3)0.031 (3)
C120.047 (3)0.086 (4)0.066 (4)0.014 (4)0.006 (3)0.001 (4)
C20.059 (4)0.090 (5)0.074 (4)0.007 (4)0.015 (3)0.001 (4)
Geometric parameters (Å, º) top
S1—C11.687 (5)C16—H160.9300
S1—C41.731 (5)C5—C61.349 (7)
N1—C71.359 (7)C5—H50.9300
N1—N21.389 (5)C20—C191.361 (7)
N4—C141.359 (6)C20—H200.9300
N4—C61.436 (6)C11—C101.382 (7)
N4—H40.8600C11—C121.390 (8)
O2—C141.229 (5)C11—H110.9300
O1—C71.238 (6)C13—C121.358 (8)
N2—C81.264 (6)C13—H130.9300
N3—C101.335 (6)C17—C181.358 (8)
N3—C91.362 (6)C17—H170.9300
C9—C131.374 (6)C1—C21.341 (8)
C9—C81.462 (6)C1—H10.9300
C8—H8A0.9700C3—C21.423 (8)
C8—H8B0.9700C3—H30.9300
C4—C31.395 (7)C10—H100.9300
C4—C51.432 (7)C19—C181.382 (9)
C15—C201.370 (6)C19—H190.9300
C15—C161.385 (7)C18—H180.9300
C15—C141.490 (6)C12—H120.9300
C7—C61.479 (7)C2—H20.9300
C16—C171.382 (7)
C1—S1—C491.9 (3)C5—C6—C7119.8 (5)
C7—N1—N2118.9 (4)N4—C6—C7118.2 (4)
C14—N4—C6119.2 (4)C19—C20—C15120.8 (5)
C14—N4—H4120.4C19—C20—H20119.6
C6—N4—H4120.4C15—C20—H20119.6
C8—N2—N1116.4 (4)C10—C11—C12117.4 (5)
C10—N3—C9118.0 (4)C10—C11—H11121.3
N3—C9—C13121.8 (5)C12—C11—H11121.3
N3—C9—C8117.6 (4)C12—C13—C9119.3 (5)
C13—C9—C8120.6 (5)C12—C13—H13120.4
N2—C8—C9132.0 (5)C9—C13—H13120.4
N2—C8—H8A104.2C18—C17—C16120.6 (5)
C9—C8—H8A104.2C18—C17—H17119.7
N2—C8—H8B104.2C16—C17—H17119.7
C9—C8—H8B104.2C2—C1—S1113.5 (5)
H8A—C8—H8B105.5C2—C1—H1123.3
C3—C4—C5124.7 (5)S1—C1—H1123.3
C3—C4—S1110.3 (4)C4—C3—C2111.7 (6)
C5—C4—S1125.0 (4)C4—C3—H3124.2
C20—C15—C16119.3 (5)C2—C3—H3124.2
C20—C15—C14117.6 (4)N3—C10—C11123.2 (5)
C16—C15—C14123.1 (4)N3—C10—H10118.4
O2—C14—N4120.5 (4)C11—C10—H10118.4
O2—C14—C15121.8 (5)C20—C19—C18120.1 (5)
N4—C14—C15117.7 (4)C20—C19—H19120.0
O1—C7—N1124.0 (4)C18—C19—H19120.0
O1—C7—C6122.6 (5)C17—C18—C19119.6 (5)
N1—C7—C6113.3 (4)C17—C18—H18120.2
C17—C16—C15119.5 (5)C19—C18—H18120.2
C17—C16—H16120.2C13—C12—C11120.2 (5)
C15—C16—H16120.2C13—C12—H12119.9
C6—C5—C4129.7 (5)C11—C12—H12119.9
C6—C5—H5115.2C1—C2—C3112.7 (5)
C4—C5—H5115.2C1—C2—H2123.7
C5—C6—N4122.0 (5)C3—C2—H2123.7
C7—N1—N2—C8179.2 (5)C14—N4—C6—C778.7 (5)
C10—N3—C9—C130.8 (7)O1—C7—C6—C56.0 (8)
C10—N3—C9—C8179.9 (4)N1—C7—C6—C5173.6 (4)
N1—N2—C8—C91.9 (8)O1—C7—C6—N4171.7 (5)
N3—C9—C8—N21.5 (8)N1—C7—C6—N48.7 (6)
C13—C9—C8—N2179.2 (5)C16—C15—C20—C192.4 (8)
C1—S1—C4—C30.9 (4)C14—C15—C20—C19176.8 (5)
C1—S1—C4—C5179.0 (5)N3—C9—C13—C120.6 (8)
C6—N4—C14—O24.0 (7)C8—C9—C13—C12179.9 (5)
C6—N4—C14—C15174.4 (4)C15—C16—C17—C182.0 (8)
C20—C15—C14—O224.7 (7)C4—S1—C1—C20.8 (5)
C16—C15—C14—O2156.1 (5)C5—C4—C3—C2179.1 (5)
C20—C15—C14—N4153.6 (4)S1—C4—C3—C20.8 (6)
C16—C15—C14—N425.6 (7)C9—N3—C10—C111.0 (7)
N2—N1—C7—O13.3 (8)C12—C11—C10—N31.1 (9)
N2—N1—C7—C6177.1 (4)C15—C20—C19—C181.7 (9)
C20—C15—C16—C170.6 (7)C16—C17—C18—C192.7 (9)
C14—C15—C16—C17178.6 (5)C20—C19—C18—C170.9 (9)
C3—C4—C5—C6178.8 (5)C9—C13—C12—C110.7 (9)
S1—C4—C5—C61.3 (8)C10—C11—C12—C130.9 (9)
C4—C5—C6—N42.4 (8)S1—C1—C2—C30.5 (7)
C4—C5—C6—C7175.1 (5)C4—C3—C2—C10.2 (8)
C14—N4—C6—C598.9 (5)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of rings N3/C9–C13 and C15–C20, respectively.
D—H···AD—HH···AD···AD—H···A
N4—H4···O1i0.862.182.931 (6)145
C8—H8B···S1ii0.972.683.492 (5)141
C10—H10···Cg30.932.893.627 (6)137
C12—H12···Cg2ii0.932.923.648 (6)136
Symmetry codes: (i) x+2, y1/2, z+2; (ii) x+1, y, z.
 

Acknowledgements

RK acknowledges the Indian Council of Medical Research, New Delhi, for financial support [research project No. BIC/12 (14)/2012] and the Department of Science and Technology Research (project No. EMR/2014/000467). KNS gratefully acknowledges the Department of Chemistry, Shri Madhwa Vadiraja Institute of Technology, Bantakal (VTU Belgam), for providing research facilities.

References

First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, S., Shen, S. & Xu, H. (2000). Dyes Pigments, 44, 195–198.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds