organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

5-(2-Hy­dr­oxy-5-meth­­oxy­benzo­yl)-1-methyl-3-nitro­pyridin-2(1H)-one

aResearch Department of Physics, S.D.N.B. Vaishnav College for Women, Chromepet, Chennai 600 044, India, and bOrganic Chemistry Division, CSIR Central Leather Research Institute, Chennai 600 020, India
*Correspondence e-mail: lakssdnbvc@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 18 July 2016; accepted 30 July 2016; online 12 August 2016)

In the title compound, C14H12N2O6, the dihedral angle between the benzene and pyridine rings is 65.90 (7)°. The nitro group is disordered and tilted with respect to the mean plane of the pyridine ring by 21.5 (4) and 22.8 (5)°, for the major and minor components, respectively. In the crystal, mol­ecules are linked by O—H⋯N hydrogen bonds, forming chains propagating along [10-1]. The chains are linked by C—H⋯O hydrogen bonds, forming a three-dimensional framework. The crystal packing is further stabilized by offset ππ stacking inter­actions [inter­centroid distance = 3.6291 (9) Å]

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The pyridine skeleton is of great importance in clinically useful mol­ecules having diverse biological activities (Patoliya et al., 2015[Patoliya, P. U., Gohela, V. P., Purohit, D. M. & Patolia, V. N. (2015). J. Chem. Pharm. Res. 7, 182-186.]). Pyridine derivatives possess analgesic (Ajitkumar & Pandeya, 2011[Ajitkumar, C. & Pandeya, S. N. (2011). Int. J. Res. Ayurveda. Pharm. 2, 1763-1767.]), anti­cancer (Hammam et al., 2001[Hammam, A. G., Sharaf, M. A. & Abdl El-Hafez, N. A. (2001). Indian J. Chem. Sect. B, 40, 213-221.]), anti­microbial and anti-oxidative (Prachayasittikul et al., 2008[Prachayasittikul, S., Suksrichavalit, T., Isarankura-Na-Ayudhya, C., Ruchirawat, S. & Prachayasittikul, V. (2008). EXCLI J. 7, 63-70.]) activities. Pyridoxine, a derivative of pyridine, is an active neutraceutical found in the form of vitamin B3 (Chaubey et al., 2011[Chaubey, A. & Pandeya, S. N. (2011). Asia. J. Pharm. Clin. Res, 4, 5-8.]). Pyridine fused-ring systems act as chemotherapeutic agents (Kumar et al., 2011[Kumar, S., Sharma, P. K., Dudhe, R. & Kumar, N. (2011). J. Chronother. Drug. Deliv, 2, 71-78.]). Picryl amino pyridines and their N-oxides possess anti­bacterial and anti­fungal (Badgujar et al., 2010[Badgujar, D. M., Talawar, M. B., Asthana, S. N. & Mahulikar, P. P. (2010). Indian J. Chem. 49B, 1675-1677.]) activities. Pyridine congeners are associated with pesticidal, insecticidal and fungicidal properties (Pradhan et al., 2012[Pradhan, J. & Goyal, A. (2012). Int. J. Pharm. Res. Allied Sci, 1, 35-42.]). As part of our studies in this area, we describe herein the synthesis and crystal structure of the title nitro­pyridine derivative.

In the title compound, Fig. 1[link], the dihedral angle between the benzene (C1–C6) and pyridine (N1/C8–C12) rings is 65.90 (7)°. Atom O6 of the nitro group is disordered, and the NO2 groups are tilted with respect to the mean plane of the pyridine ring by 21.5 (4) and 22.8 (5)°, for the major (N2/O5/O6A) and minor (N2/O5/O6B) components, respectively. The methyl carbon atom C13 deviates from the plane of the pyridine ring by 0.070 (2) Å. The C14—O2—C2—C3 torsion angle of 178.54 (15)° indicates that the meth­oxy group (–O2—C14) is not quite coplanar with the phenol ring.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

In the crystal, mol­ecules are linked by O—H⋯N hydrogen bonds, forming chains propagating along [10[\overline{1}]]; see Fig. 2[link] and Table 1[link]. The chains are linked by C—H⋯O hydrogen bonds forming a three-dimensional framework (Table 1[link] and Fig. 3[link]). The crystal packing also features offset ππ stacking inter­actions [Cg1⋯Cg2iii = 3.6291 (9) Å, inter­planar distance = 3.4403 (6) Å, slippage = 1.111 Å, Cg1 and Cg2 are the centroids of rings N1/C8—C12 and C1—C6, respectively, symmetry code: (iii) −x + [{1\over 2}], y − [{1\over 2}], −z + [{1\over 2}]]

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O4i 0.83 (2) 1.87 (2) 2.6948 (17) 173 (2)
C4—H4⋯O4i 0.93 2.56 3.233 (2) 129
C14—H14B⋯O3ii 0.96 2.41 3.319 (2) 158
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
A partial view along the b axis of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines (see Table 1[link]).
[Figure 3]
Figure 3
A view along the a axis of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines (see Table 1[link]) and, for clarity, only the H atoms involved in hydrogen bonding are shown.

Synthesis and crystallization

A mixture of 6-meth­oxy-3-formyl­chromone (1 mmol), (Z)-N-methyl-1-(methyl­thio)-2-nitro­ethenamine (1 mmol), and indium tri­fluoro­methane­sulfonate (0.020 mmol) in ethanol (3 ml) were heated at reflux, and the resulting solution was stirred for 1 h. The consumption of the starting material was monitored by TLC. After completion of the reaction, the compound obtained was purified by column chromatography to obtain pure product in good yield (78%). The purified compound was recrystallized from the mixed solvents of ethanol and DMSO-D6. On slow evaporation of the solvents, block-like colourless crystals of the title compound were obtained.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Atom O6 of the NO2 group was split over two positions and refined with a fixed occupancy ratio of O6A:O6B = 0.6:0.4.

Table 2
Experimental details

Crystal data
Chemical formula C14H12N2O6
Mr 304.26
Crystal system, space group Monoclinic, P21/n
Temperature (K) 293
a, b, c (Å) 12.5891 (4), 7.7739 (2), 14.1240 (4)
β (°) 100.466 (1)
V3) 1359.27 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.12
Crystal size (mm) 0.30 × 0.25 × 0.25
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.965, 0.971
No. of measured, independent and observed [I > 2σ(I)] reflections 10209, 2603, 2210
Rint 0.017
(sin θ/λ)max−1) 0.612
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.116, 1.07
No. of reflections 2603
No. of parameters 215
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.49, −0.40
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

5-(2-Hydroxy-5-methoxybenzoyl)-1-methyl-3-nitropyridin-2(1H)-one top
Crystal data top
C14H12N2O6F(000) = 632
Mr = 304.26Dx = 1.487 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 12.5891 (4) ÅCell parameters from 2062 reflections
b = 7.7739 (2) Åθ = 2.0–25.0°
c = 14.1240 (4) ŵ = 0.12 mm1
β = 100.466 (1)°T = 293 K
V = 1359.27 (7) Å3Block, colourless
Z = 40.30 × 0.25 × 0.25 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2210 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.017
ω and φ scansθmax = 25.8°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1511
Tmin = 0.965, Tmax = 0.971k = 99
10209 measured reflectionsl = 1714
2603 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.0549P)2 + 0.5029P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2603 reflectionsΔρmax = 0.49 e Å3
215 parametersΔρmin = 0.40 e Å3
2 restraintsExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0065 (17)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.34903 (10)0.35190 (18)0.14070 (9)0.0491 (4)
H1O0.3954 (19)0.328 (3)0.1083 (17)0.073 (7)*
O20.52579 (9)0.72712 (18)0.46370 (9)0.0506 (3)
O30.15540 (9)0.52987 (17)0.17871 (8)0.0450 (3)
O40.00621 (11)0.1998 (2)0.53725 (10)0.0699 (5)
O50.17278 (12)0.3564 (3)0.44625 (13)0.0941 (6)
O6A0.1779 (5)0.4205 (9)0.2961 (4)0.097 (2)0.6
O6B0.1684 (7)0.4936 (10)0.3255 (5)0.077 (2)0.4
N10.15383 (10)0.24178 (17)0.47099 (9)0.0345 (3)
N20.12793 (12)0.3882 (2)0.37995 (13)0.0554 (4)
C10.36915 (12)0.5983 (2)0.36290 (10)0.0326 (3)
H10.32370.63600.40370.039*
C20.47843 (12)0.6343 (2)0.38467 (11)0.0373 (4)
C30.54549 (12)0.5717 (2)0.32474 (12)0.0442 (4)
H30.61920.59390.33940.053*
C40.50445 (13)0.4774 (2)0.24408 (12)0.0428 (4)
H40.55090.43510.20540.051*
C50.39424 (12)0.4444 (2)0.21954 (11)0.0350 (4)
C60.32676 (11)0.50583 (19)0.28016 (10)0.0301 (3)
C70.20704 (11)0.48412 (19)0.25570 (10)0.0310 (3)
C80.15132 (11)0.40964 (19)0.33026 (10)0.0303 (3)
C90.03961 (12)0.4296 (2)0.32247 (11)0.0355 (4)
H90.00050.48980.27070.043*
C100.01181 (12)0.3610 (2)0.39050 (12)0.0387 (4)
C110.04319 (13)0.2634 (2)0.47101 (12)0.0406 (4)
C120.20469 (11)0.31358 (19)0.40519 (10)0.0310 (3)
H120.27880.29750.41070.037*
C130.21453 (15)0.1356 (3)0.54895 (13)0.0497 (5)
H13A0.28880.12890.54170.075*
H13B0.18410.02200.54590.075*
H13C0.21020.18660.61000.075*
C140.45551 (15)0.7941 (3)0.52332 (12)0.0505 (5)
H14A0.40370.86960.48620.076*
H14B0.49700.85670.57590.076*
H14C0.41850.70100.54800.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0419 (7)0.0648 (9)0.0456 (7)0.0080 (6)0.0214 (6)0.0176 (6)
O20.0350 (6)0.0647 (8)0.0491 (7)0.0081 (6)0.0002 (5)0.0084 (6)
O30.0360 (6)0.0615 (8)0.0359 (6)0.0013 (5)0.0025 (5)0.0080 (5)
O40.0531 (8)0.0988 (12)0.0680 (9)0.0020 (8)0.0378 (7)0.0260 (8)
O50.0414 (8)0.1529 (19)0.0978 (13)0.0083 (10)0.0385 (8)0.0166 (12)
O6A0.0331 (16)0.187 (7)0.069 (3)0.015 (3)0.0041 (16)0.001 (3)
O6B0.035 (3)0.108 (5)0.091 (5)0.021 (3)0.018 (3)0.035 (4)
N10.0333 (7)0.0381 (7)0.0343 (7)0.0014 (6)0.0124 (5)0.0002 (6)
N20.0297 (8)0.0688 (11)0.0716 (11)0.0007 (8)0.0197 (8)0.0014 (9)
C10.0295 (7)0.0369 (8)0.0322 (7)0.0008 (6)0.0078 (6)0.0033 (6)
C20.0317 (8)0.0398 (9)0.0386 (8)0.0022 (7)0.0021 (6)0.0050 (7)
C30.0249 (7)0.0540 (10)0.0543 (10)0.0024 (7)0.0088 (7)0.0061 (8)
C40.0329 (8)0.0509 (10)0.0494 (10)0.0011 (7)0.0200 (7)0.0007 (8)
C50.0345 (8)0.0374 (8)0.0357 (8)0.0017 (7)0.0137 (6)0.0033 (6)
C60.0282 (7)0.0328 (8)0.0308 (7)0.0005 (6)0.0096 (6)0.0052 (6)
C70.0305 (7)0.0329 (8)0.0297 (7)0.0001 (6)0.0063 (6)0.0019 (6)
C80.0261 (7)0.0334 (8)0.0329 (8)0.0012 (6)0.0096 (6)0.0056 (6)
C90.0287 (7)0.0388 (8)0.0394 (8)0.0005 (6)0.0067 (6)0.0035 (7)
C100.0260 (8)0.0435 (9)0.0493 (9)0.0020 (7)0.0144 (7)0.0082 (7)
C110.0354 (8)0.0470 (10)0.0443 (9)0.0048 (7)0.0202 (7)0.0037 (7)
C120.0265 (7)0.0354 (8)0.0334 (7)0.0009 (6)0.0121 (6)0.0044 (6)
C130.0462 (10)0.0589 (11)0.0445 (10)0.0003 (9)0.0097 (8)0.0139 (8)
C140.0500 (10)0.0590 (12)0.0400 (9)0.0072 (9)0.0015 (8)0.0078 (8)
Geometric parameters (Å, º) top
O1—C51.3602 (19)C3—H30.9300
O1—H1O0.83 (2)C4—C51.392 (2)
O2—C21.3714 (19)C4—H40.9300
O2—C141.426 (2)C5—C61.395 (2)
O3—C71.2144 (18)C6—C71.493 (2)
O4—C111.223 (2)C7—C81.485 (2)
O5—N21.204 (2)C8—C121.368 (2)
O6A—N21.261 (6)C8—C91.399 (2)
O6B—N21.174 (8)C9—C101.361 (2)
N1—C121.3421 (19)C9—H90.9300
N1—C111.403 (2)C10—C111.436 (2)
N1—C131.474 (2)C12—H120.9300
N2—C101.458 (2)C13—H13A0.9600
C1—C21.383 (2)C13—H13B0.9600
C1—C61.393 (2)C13—H13C0.9600
C1—H10.9300C14—H14A0.9600
C2—C31.388 (2)C14—H14B0.9600
C3—C41.374 (2)C14—H14C0.9600
C5—O1—H1O110.0 (16)O3—C7—C6121.85 (13)
C2—O2—C14116.63 (12)C8—C7—C6117.83 (12)
C12—N1—C11123.28 (13)C12—C8—C9117.83 (14)
C12—N1—C13120.16 (13)C12—C8—C7122.20 (13)
C11—N1—C13116.56 (13)C9—C8—C7119.90 (13)
O6B—N2—O5116.3 (4)C10—C9—C8120.08 (15)
O5—N2—O6A123.1 (3)C10—C9—H9120.0
O6B—N2—C10118.4 (4)C8—C9—H9120.0
O5—N2—C10119.62 (17)C9—C10—C11122.90 (14)
O6A—N2—C10116.4 (3)C9—C10—N2117.90 (15)
C2—C1—C6120.33 (14)C11—C10—N2119.20 (15)
C2—C1—H1119.8O4—C11—N1117.87 (16)
C6—C1—H1119.8O4—C11—C10128.61 (16)
O2—C2—C1123.73 (15)N1—C11—C10113.53 (13)
O2—C2—C3117.28 (14)N1—C12—C8122.26 (13)
C1—C2—C3118.98 (15)N1—C12—H12118.9
C4—C3—C2120.92 (14)C8—C12—H12118.9
C4—C3—H3119.5N1—C13—H13A109.5
C2—C3—H3119.5N1—C13—H13B109.5
C3—C4—C5120.85 (15)H13A—C13—H13B109.5
C3—C4—H4119.6N1—C13—H13C109.5
C5—C4—H4119.6H13A—C13—H13C109.5
O1—C5—C4123.47 (14)H13B—C13—H13C109.5
O1—C5—C6118.19 (13)O2—C14—H14A109.5
C4—C5—C6118.33 (14)O2—C14—H14B109.5
C1—C6—C5120.55 (13)H14A—C14—H14B109.5
C1—C6—C7117.98 (13)O2—C14—H14C109.5
C5—C6—C7121.38 (13)H14A—C14—H14C109.5
O3—C7—C8120.28 (13)H14B—C14—H14C109.5
C14—O2—C2—C12.5 (2)C12—C8—C9—C102.9 (2)
C14—O2—C2—C3178.54 (15)C7—C8—C9—C10179.79 (14)
C6—C1—C2—O2178.76 (14)C8—C9—C10—C111.4 (2)
C6—C1—C2—C32.2 (2)C8—C9—C10—N2178.91 (15)
O2—C2—C3—C4179.98 (15)O6B—N2—C10—C914.6 (5)
C1—C2—C3—C40.9 (2)O5—N2—C10—C9167.08 (19)
C2—C3—C4—C51.0 (3)O6A—N2—C10—C922.9 (4)
C3—C4—C5—O1179.97 (16)O6B—N2—C10—C11165.7 (4)
C3—C4—C5—C61.5 (2)O5—N2—C10—C1113.2 (3)
C2—C1—C6—C51.7 (2)O6A—N2—C10—C11156.8 (4)
C2—C1—C6—C7174.70 (14)C12—N1—C11—O4176.21 (16)
O1—C5—C6—C1178.72 (14)C13—N1—C11—O43.1 (2)
C4—C5—C6—C10.2 (2)C12—N1—C11—C103.6 (2)
O1—C5—C6—C75.0 (2)C13—N1—C11—C10177.08 (14)
C4—C5—C6—C7176.48 (14)C9—C10—C11—O4178.07 (19)
C1—C6—C7—O3123.47 (16)N2—C10—C11—O42.3 (3)
C5—C6—C7—O352.9 (2)C9—C10—C11—N11.7 (2)
C1—C6—C7—C854.42 (19)N2—C10—C11—N1177.93 (14)
C5—C6—C7—C8129.20 (15)C11—N1—C12—C82.3 (2)
O3—C7—C8—C12161.23 (15)C13—N1—C12—C8178.38 (15)
C6—C7—C8—C1220.9 (2)C9—C8—C12—N11.1 (2)
O3—C7—C8—C915.5 (2)C7—C8—C12—N1177.92 (13)
C6—C7—C8—C9162.38 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O4i0.83 (2)1.87 (2)2.6948 (17)173 (2)
C4—H4···O4i0.932.563.233 (2)129
C14—H14B···O3ii0.962.413.319 (2)158
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x+1/2, y+3/2, z+1/2.
 

Acknowledgements

The authors thank the Department of Chemistry, IIT, Chennai, for the data collection.

References

First citationAjitkumar, C. & Pandeya, S. N. (2011). Int. J. Res. Ayurveda. Pharm. 2, 1763–1767.  Google Scholar
First citationBadgujar, D. M., Talawar, M. B., Asthana, S. N. & Mahulikar, P. P. (2010). Indian J. Chem. 49B, 1675–1677.  CAS Google Scholar
First citationBruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChaubey, A. & Pandeya, S. N. (2011). Asia. J. Pharm. Clin. Res, 4, 5–8.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHammam, A. G., Sharaf, M. A. & Abdl El-Hafez, N. A. (2001). Indian J. Chem. Sect. B, 40, 213–221.  Google Scholar
First citationKumar, S., Sharma, P. K., Dudhe, R. & Kumar, N. (2011). J. Chronother. Drug. Deliv, 2, 71–78.  CAS Google Scholar
First citationPatoliya, P. U., Gohela, V. P., Purohit, D. M. & Patolia, V. N. (2015). J. Chem. Pharm. Res. 7, 182–186.  CAS Google Scholar
First citationPrachayasittikul, S., Suksrichavalit, T., Isarankura-Na-Ayudhya, C., Ruchirawat, S. & Prachayasittikul, V. (2008). EXCLI J. 7, 63-70.  Google Scholar
First citationPradhan, J. & Goyal, A. (2012). Int. J. Pharm. Res. Allied Sci, 1, 35–42.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds