organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Tris(4-meth­­oxy­phen­yl)phosphine selenide

aDepartment of Chemistry and Physics, Armstrong State University, Savannah, GA 31419, USA
*Correspondence e-mail: will.lynch@armstrong.edu

Edited by S. Parkin, University of Kentucky, USA (Received 24 July 2016; accepted 6 August 2016; online 16 August 2016)

The title compound, C21H21O3PSe, is comprised of a P atom in a distorted tetra­hedral environment, attached to the Se atom and three C atoms of the phenyl rings. The P—Se bond length is 2.1214 (12) Å. All three meth­oxy groups are near coplanar with their respective phenyl rings, with the angles between the phenyl ring and the C—O bond of the meth­oxy groups being 5.7 (2), 1.5 (4), and 5.7 (3)°. The torsion angles of the phenyl rings relative to the P=Se bond are 35.62 (10), 35.07 (13), and 44.50 (11)°. No strong inter­molecular inter­actions were observed, but that in addition to van der Waals forces, there are C—H⋯π and C—H⋯Se close contacts.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound C21H21O3PSe or SeP(C7H7O)3 (Fig. 1[link]) is composed of a distorted tetra­hedral phospho­rus atom attached to the selenium atom and three carbons from three different phenyl rings. The P=Se bond distance is 2.1214 (15) Å, similar to those reported previously for the phenyl (Codding & Kerr, 1979[Codding, P. W. & Kerr, K. A. (1979). Acta Cryst. B35, 1261-1263.]), p-fluoro­phenyl (Muller & Meijboom, 2007[Muller, A. & Meijboom, R. (2007). Acta Cryst. E63, o4055.]), p-tolyl (Muller, 2011[Muller, A. (2011). Acta Cryst. E67, o45.]) and o-tolyl (Cameron & Dahlèn, 1975[Cameron, T. S. & Dahlèn, B. (1975). J. Chem. Soc. Perkin Trans. 2, pp. 1737-1751.]) derivatives (all 2.10–2.12 Å). This implies minimal effect of the substituent group on the bond distance between the phospho­rus and selenium atoms. The torsion angles relative to the P=Se bond in the para meth­oxy derivative are 35.62 (10), 35.07 (13) and 44.50 (11)° for the aryl rings containing C1, C8, and C15, respectively. The meth­oxy carbon–oxygen bond alignments can be described as a propeller in three dimensions. The cone angle is 128.2 (7)° for the cone swept out by the phenyl rings during a rotation around the Se=P bond (averaged value for the three phenyl rings). The compound presents extremely weak C—H⋯Se and C—H⋯π inter­molecular inter­actions (Table 1[link]). The crystal packing is shown in Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14C⋯Se1i 0.98 2.96 3.798 (6) 145
C7—H7A⋯Se1ii 0.98 2.99 3.809 (5) 142
C12—H12⋯Cg1iii 0.95 2.82 3.515 (6) 130
C21—H21BCg2iv 0.98 2.95 3.606 (6) 126
Symmetry codes: (i) x, y-1, z; (ii) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iii) [x, -y+1, z-{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
A view of the mol­ecular structure of the title compound showing the atom labeling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
Crystal packing of the title compound viewed along the b axis. All H atoms have been omitted for clarity.

Synthesis and crystallization

The title compound was synthesized by dissolving 0.25 g (0.71 mmol) of tris-4-meth­oxy­phenyl­phosphine in 20 ml of methanol. This solution was brought to a boil and an equimolar amount of selenium (0.056 g, 0.71 mmol) was added in one portion. The solution was heated at reflux for 15 minutes and then filtered hot to remove any unreacted selenium metal. Colorless crystals were grown by slow evaporation of the solvent at room temperature. The yield was 70% based on the phosphine starting material. This is an adaptation of a literature preparation by Dakternieks et al. (1994[Dakternieks, D., Dyson, G. A., O'Connell, J. L. & Schiesser, C. H. (1994). J. Chem. Educ. 71, 168-169.]).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C21H21O3PSe
Mr 431.31
Crystal system, space group Monoclinic, Cc
Temperature (K) 173
a, b, c (Å) 16.442 (11), 10.991 (7), 11.722 (8)
β (°) 108.611 (7)
V3) 2008 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.97
Crystal size (mm) 0.4 × 0.2 × 0.2
 
Data collection
Diffractometer Rigaku XtaLAB mini
Absorption correction Multi-scan (REQAB; Rigaku, 1998[Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.532, 0.675
No. of measured, independent and observed [I > 2σ(I)] reflections 4535, 4535, 4111
Rint 0.038
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.065, 0.92
No. of reflections 4535
No. of parameters 238
No. of restraints 2
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.25, −0.47
Absolute structure Flack x determined using 1735 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.002 (7)
Computer programs: CrystalClear-SM Expert (Rigaku, 2011[Rigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrystalClear-SM Expert (Rigaku, 2011); cell refinement: CrystalClear-SM Expert (Rigaku, 2011); data reduction: CrystalClear-SM Expert (Rigaku, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Tris(4-methoxyphenyl)phosphine selenide top
Crystal data top
C21H21O3PSeF(000) = 880
Mr = 431.31Dx = 1.427 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71075 Å
a = 16.442 (11) ÅCell parameters from 2952 reflections
b = 10.991 (7) Åθ = 2.3–27.5°
c = 11.722 (8) ŵ = 1.97 mm1
β = 108.611 (7)°T = 173 K
V = 2008 (2) Å3Prism, colorless
Z = 40.4 × 0.2 × 0.2 mm
Data collection top
Rigaku XtaLAB mini
diffractometer
4111 reflections with I > 2σ(I)
Detector resolution: 6.827 pixels mm-1Rint = 0.038
ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
h = 2121
Tmin = 0.532, Tmax = 0.675k = 1414
4535 measured reflectionsl = 1515
4535 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2)]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.065(Δ/σ)max = 0.001
S = 0.92Δρmax = 0.25 e Å3
4535 reflectionsΔρmin = 0.47 e Å3
238 parametersAbsolute structure: Flack x determined using 1735 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
2 restraintsAbsolute structure parameter: 0.002 (7)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Se10.99996 (3)0.83595 (4)0.99958 (4)0.03525 (12)
P10.89609 (7)0.72080 (9)0.90804 (9)0.0264 (2)
O10.6556 (2)0.6964 (3)1.1948 (3)0.0375 (8)
O21.0079 (2)0.2046 (3)0.9260 (3)0.0368 (8)
O30.7375 (2)0.9091 (3)0.4097 (3)0.0374 (8)
C10.8154 (3)0.7122 (4)0.9826 (4)0.0285 (9)
C20.7986 (3)0.8144 (4)1.0434 (4)0.0346 (10)
H20.82560.88981.03880.042*
C30.7432 (3)0.8061 (4)1.1096 (4)0.0359 (11)
H30.73130.87641.14870.043*
C40.7043 (3)0.6962 (4)1.1201 (4)0.0301 (9)
C50.7181 (3)0.5943 (4)1.0573 (4)0.0305 (10)
H50.68960.51981.06040.037*
C60.7738 (3)0.6030 (4)0.9905 (4)0.0303 (10)
H60.78390.53330.94910.036*
C70.6197 (3)0.5831 (5)1.2162 (5)0.0455 (13)
H7A0.57530.55691.14240.068*
H7B0.59430.59361.28060.068*
H7C0.66500.52141.24010.068*
C80.9314 (3)0.5653 (4)0.9040 (4)0.0274 (9)
C90.9805 (3)0.5112 (4)1.0133 (4)0.0304 (10)
H90.99710.55811.08500.036*
C101.0045 (4)0.3915 (4)1.0170 (4)0.0304 (10)
H101.03670.35551.09140.036*
C110.9818 (3)0.3226 (4)0.9118 (4)0.0285 (9)
C120.9342 (3)0.3753 (4)0.8025 (4)0.0339 (10)
H120.91920.32880.73040.041*
C130.9090 (3)0.4966 (4)0.7998 (4)0.0310 (9)
H130.87600.53230.72560.037*
C140.9843 (5)0.1284 (5)0.8213 (5)0.074 (2)
H14A1.00990.16040.76250.111*
H14B0.92170.12730.78560.111*
H14C1.00520.04560.84410.111*
C150.8431 (3)0.7702 (4)0.7547 (4)0.0267 (9)
C160.7547 (3)0.7820 (4)0.7069 (4)0.0351 (11)
H160.71960.75840.75360.042*
C170.7166 (3)0.8280 (4)0.5913 (4)0.0351 (11)
H170.65600.83700.56020.042*
C180.7675 (3)0.8607 (4)0.5215 (4)0.0295 (9)
C190.8560 (3)0.8467 (4)0.5681 (4)0.0344 (10)
H190.89100.86770.52030.041*
C200.8934 (3)0.8026 (4)0.6832 (4)0.0336 (10)
H200.95400.79410.71410.040*
C210.6481 (3)0.9361 (5)0.3620 (4)0.0448 (12)
H21A0.63530.96930.28060.067*
H21B0.63270.99590.41360.067*
H21C0.61480.86140.35900.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se10.0326 (2)0.0340 (2)0.0374 (2)0.0059 (2)0.00885 (16)0.0040 (2)
P10.0250 (5)0.0250 (5)0.0288 (6)0.0011 (4)0.0081 (4)0.0008 (4)
O10.0371 (18)0.0396 (18)0.043 (2)0.0021 (16)0.0221 (16)0.0015 (15)
O20.049 (2)0.0280 (16)0.0346 (18)0.0103 (15)0.0153 (15)0.0035 (13)
O30.0367 (19)0.0473 (19)0.0257 (17)0.0091 (17)0.0061 (14)0.0057 (14)
C10.029 (2)0.028 (2)0.028 (2)0.0009 (19)0.0087 (18)0.0006 (17)
C20.035 (3)0.026 (2)0.045 (3)0.000 (2)0.016 (2)0.0005 (19)
C30.036 (3)0.029 (2)0.049 (3)0.001 (2)0.023 (2)0.004 (2)
C40.025 (2)0.036 (2)0.029 (2)0.0003 (19)0.0083 (18)0.0012 (19)
C50.027 (2)0.030 (2)0.035 (3)0.0011 (19)0.0106 (19)0.0003 (19)
C60.033 (3)0.026 (2)0.032 (2)0.0009 (19)0.012 (2)0.0028 (18)
C70.042 (3)0.044 (3)0.058 (3)0.001 (3)0.028 (3)0.010 (2)
C80.028 (2)0.028 (2)0.028 (2)0.0002 (18)0.0111 (17)0.0017 (17)
C90.036 (3)0.030 (2)0.021 (2)0.004 (2)0.0046 (18)0.0020 (17)
C100.033 (2)0.031 (2)0.026 (3)0.002 (2)0.008 (2)0.0032 (18)
C110.033 (2)0.028 (2)0.027 (2)0.0025 (19)0.0136 (19)0.0034 (17)
C120.047 (3)0.027 (2)0.027 (2)0.001 (2)0.012 (2)0.0016 (18)
C130.036 (2)0.030 (2)0.024 (2)0.001 (2)0.0051 (18)0.0023 (17)
C140.147 (7)0.035 (3)0.047 (4)0.027 (4)0.040 (4)0.003 (3)
C150.028 (2)0.024 (2)0.027 (2)0.0006 (18)0.0072 (17)0.0012 (16)
C160.032 (2)0.043 (3)0.034 (3)0.003 (2)0.015 (2)0.006 (2)
C170.023 (2)0.041 (3)0.038 (3)0.001 (2)0.0065 (19)0.0039 (19)
C180.032 (2)0.028 (2)0.027 (2)0.0027 (19)0.0077 (19)0.0012 (17)
C190.029 (2)0.043 (3)0.033 (3)0.006 (2)0.013 (2)0.0061 (19)
C200.023 (2)0.042 (3)0.035 (3)0.004 (2)0.0078 (19)0.004 (2)
C210.039 (3)0.061 (3)0.030 (3)0.012 (3)0.004 (2)0.000 (2)
Geometric parameters (Å, º) top
Se1—P12.1214 (15)C9—H90.9500
P1—C11.809 (4)C9—C101.370 (5)
P1—C81.810 (4)C10—H100.9500
P1—C151.812 (4)C10—C111.393 (6)
O1—C41.362 (5)C11—C121.397 (6)
O1—C71.433 (5)C12—H120.9500
O2—C111.360 (5)C12—C131.393 (6)
O2—C141.433 (6)C13—H130.9500
O3—C181.353 (5)C14—H14A0.9800
O3—C211.428 (5)C14—H14B0.9800
C1—C21.405 (6)C14—H14C0.9800
C1—C61.399 (6)C15—C161.387 (6)
C2—H20.9500C15—C201.399 (6)
C2—C31.376 (6)C16—H160.9500
C3—H30.9500C16—C171.394 (6)
C3—C41.390 (6)C17—H170.9500
C4—C51.398 (6)C17—C181.392 (6)
C5—H50.9500C18—C191.390 (6)
C5—C61.385 (6)C19—H190.9500
C6—H60.9500C19—C201.380 (6)
C7—H7A0.9800C20—H200.9500
C7—H7B0.9800C21—H21A0.9800
C7—H7C0.9800C21—H21B0.9800
C8—C91.409 (6)C21—H21C0.9800
C8—C131.383 (6)
H14C···Se1i2.956 (2)H12···Cg1iii2.824 (2)
H7A···Se1ii2.985 (2)H21B···Cg2iv2.946 (3)
C1—P1—Se1112.53 (15)C11—C10—H10120.0
C1—P1—C8104.71 (19)O2—C11—C10115.2 (4)
C1—P1—C15107.5 (2)O2—C11—C12124.8 (4)
C8—P1—Se1111.31 (15)C10—C11—C12120.0 (4)
C8—P1—C15108.28 (19)C11—C12—H12120.2
C15—P1—Se1112.15 (14)C13—C12—C11119.6 (4)
C4—O1—C7118.0 (4)C13—C12—H12120.2
C11—O2—C14117.6 (4)C8—C13—C12120.6 (4)
C18—O3—C21118.1 (4)C8—C13—H13119.7
C2—C1—P1119.8 (3)C12—C13—H13119.7
C6—C1—P1121.8 (3)O2—C14—H14A109.5
C6—C1—C2118.2 (4)O2—C14—H14B109.5
C1—C2—H2119.8O2—C14—H14C109.5
C3—C2—C1120.4 (4)H14A—C14—H14B109.5
C3—C2—H2119.8H14A—C14—H14C109.5
C2—C3—H3119.5H14B—C14—H14C109.5
C2—C3—C4120.9 (4)C16—C15—P1122.6 (3)
C4—C3—H3119.5C16—C15—C20118.5 (4)
O1—C4—C3115.9 (4)C20—C15—P1118.8 (3)
O1—C4—C5124.6 (4)C15—C16—H16119.5
C3—C4—C5119.5 (4)C15—C16—C17121.0 (4)
C4—C5—H5120.3C17—C16—H16119.5
C6—C5—C4119.3 (4)C16—C17—H17120.1
C6—C5—H5120.3C18—C17—C16119.8 (4)
C1—C6—H6119.2C18—C17—H17120.1
C5—C6—C1121.5 (4)O3—C18—C17124.8 (4)
C5—C6—H6119.2O3—C18—C19115.8 (4)
O1—C7—H7A109.5C19—C18—C17119.4 (4)
O1—C7—H7B109.5C18—C19—H19119.7
O1—C7—H7C109.5C20—C19—C18120.5 (4)
H7A—C7—H7B109.5C20—C19—H19119.7
H7A—C7—H7C109.5C15—C20—H20119.6
H7B—C7—H7C109.5C19—C20—C15120.7 (4)
C9—C8—P1118.0 (3)C19—C20—H20119.6
C13—C8—P1122.8 (3)O3—C21—H21A109.5
C13—C8—C9119.1 (4)O3—C21—H21B109.5
C8—C9—H9119.7O3—C21—H21C109.5
C10—C9—C8120.7 (4)H21A—C21—H21B109.5
C10—C9—H9119.7H21A—C21—H21C109.5
C9—C10—H10120.0H21B—C21—H21C109.5
C9—C10—C11120.0 (4)
Se1—P1—C1—C233.7 (4)C7—O1—C4—C53.7 (7)
Se1—P1—C1—C6140.8 (3)C8—P1—C1—C2154.7 (4)
Se1—P1—C8—C951.3 (4)C8—P1—C1—C619.7 (4)
Se1—P1—C8—C13131.7 (3)C8—P1—C15—C16105.4 (4)
Se1—P1—C15—C16131.4 (3)C8—P1—C15—C2077.3 (4)
Se1—P1—C15—C2045.9 (4)C8—C9—C10—C111.2 (7)
P1—C1—C2—C3174.0 (4)C9—C8—C13—C120.2 (7)
P1—C1—C6—C5173.8 (3)C9—C10—C11—O2179.2 (4)
P1—C8—C9—C10176.0 (4)C9—C10—C11—C120.2 (8)
P1—C8—C13—C12176.8 (3)C10—C11—C12—C130.8 (7)
P1—C15—C16—C17175.7 (4)C11—C12—C13—C80.7 (7)
P1—C15—C20—C19176.6 (4)C13—C8—C9—C101.2 (7)
O1—C4—C5—C6175.5 (4)C14—O2—C11—C10178.4 (5)
O2—C11—C12—C13178.1 (4)C14—O2—C11—C120.5 (7)
O3—C18—C19—C20177.5 (4)C15—P1—C1—C290.3 (4)
C1—P1—C8—C970.5 (4)C15—P1—C1—C695.3 (4)
C1—P1—C8—C13106.5 (4)C15—P1—C8—C9175.0 (3)
C1—P1—C15—C167.2 (4)C15—P1—C8—C137.9 (4)
C1—P1—C15—C20170.1 (3)C15—C16—C17—C181.2 (7)
C1—C2—C3—C41.5 (7)C16—C15—C20—C190.8 (7)
C2—C1—C6—C50.7 (7)C16—C17—C18—O3178.2 (4)
C2—C3—C4—O1175.4 (4)C16—C17—C18—C190.2 (7)
C2—C3—C4—C53.5 (7)C17—C18—C19—C201.0 (7)
C3—C4—C5—C63.3 (7)C18—C19—C20—C150.5 (7)
C4—C5—C6—C11.2 (7)C20—C15—C16—C171.6 (7)
C6—C1—C2—C30.6 (7)C21—O3—C18—C174.2 (7)
C7—O1—C4—C3175.2 (4)C21—O3—C18—C19174.2 (4)
Symmetry codes: (i) x, y1, z; (ii) x1/2, y1/2, z; (iii) x, y+1, z1/2; (iv) x1/2, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C14—H14C···Se1i0.982.963.798 (6)145
C7—H7A···Se1ii0.982.993.809 (5)142
C12—H12···Cg1iii0.952.823.515 (6)130
C21—H21B···Cg2iv0.982.953.606 (6)126
Symmetry codes: (i) x, y1, z; (ii) x1/2, y1/2, z; (iii) x, y+1, z1/2; (iv) x1/2, y+3/2, z1/2.
 

Acknowledgements

The authors would like to thank Armstrong State University for support of this work.

References

First citationCameron, T. S. & Dahlèn, B. (1975). J. Chem. Soc. Perkin Trans. 2, pp. 1737–1751.  CSD CrossRef Web of Science Google Scholar
First citationCodding, P. W. & Kerr, K. A. (1979). Acta Cryst. B35, 1261–1263.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationDakternieks, D., Dyson, G. A., O'Connell, J. L. & Schiesser, C. H. (1994). J. Chem. Educ. 71, 168–169.  CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMuller, A. (2011). Acta Cryst. E67, o45.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMuller, A. & Meijboom, R. (2007). Acta Cryst. E63, o4055.  CSD CrossRef IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds