organic compounds
Allyl 3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-β-D-glucopyranoside
aDepartment of Chemistry, Villanova University, 800 E Lancaster Avenue, Villanova, PA, USA
*Correspondence e-mail: robert.giuliano@villanova.edu
The protected glycoside of 2-amino-2-deoxyglucose (glucosamine), namely allyl 3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-β-D-glucopyranoside, C23H25NO10, was synthesized from the glycosyl bromide. Crystallographic analysis confirmed the β-anomeric configuration and showed an approximately orthogonal orientation of the phthalimido group with respect to the pyranose ring. The of the molecule was known from the synthetic route and assigned accordingly.
Keywords: crystal structure; carbohydrate; allyl glycoside; N-acetylglucosamine; GlcNAc.
CCDC reference: 1500891
Structure description
Aside from its presence in chitin, the second most abundant biopolymer in nature, N-acetylglucosamine (GlcNAc) occurs widely in and bioconjugates in both α- and β-linked as well as in other biologically important substances such as heparins and tunicamycins (Stick & Williams, 2009; Kerns & Wei, 2012; Lindhorst, 2003). Owing to the role of GlcNAc-containing in biologically active materials and cell surface there has been much interest in their chemical synthesis (Ibid.). The title allyl glycoside (1) has been used previously as an intermediate in the synthesis of oligosaccharide haptens of Streptococci Group A cell-wall (Pinto et al., 1991) and its analogous tert-butyl glycoside was used in a synthetic program aimed at gangliotriosylceramide, a tumor-specific cell-surface marker (Wessel et al., 1984). Our interest in the synthesis of the lipid A disaccharide (Johnson et al., 1999), which is comprised of two β-(1→6) linked GlcNAc units, required the preparation of allyl glycoside 1 for use as an intermediate. The synthesis of 1 was reported using a ferric chloride-catalyzed glycosidation of allyl alcohol with 1,3,4,6-tetra-O-acetyl-2-deoxy-2-phthalimido-β-D-glucopyranoside (Kiso & Anderson, 1985). Other syntheses have been reported (Miquel et al., 2004). Our route was based on a modification in which the glycosidation of allyl alcohol with 3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-β-D-glucopyranosyl bromide occurred in the presence of silver trifluoromethanesulfonate and tetramethylurea (Hanessian & Banoub, 1977a,b) in high yield and stereoselectivity. Chromatographic purification of 1 gave product suitable for crystallographic analysis.
The pyranose ring of 1 adopts a chair conformation with little evidence of distortion or puckering (Fig. 1). The N1—C2—C1—O2 and N1—C2—C3—O3 torsion angles are −65.2 (2) and 66.4 (2)°, respectively, corresponding to gauche relationships between the C1 allyloxy group and the C2 phthalimido group and between the C2 phthalimido group and the C3 acetoxy group. The phthalimido group is approximately orthogonal to a plane that bisects the pyranose ring at C2 and C5. The stereoselectivity for the formation of the 1,2-trans product in glycosidations of sugars that have a phthalimido group at C2 is ascribed to the that this relatively large group provides on the α-face of the pyranose ring (Stick & Williams, 2009) or through neighboring group participation involving a phthalimide carbonyl group (Lindhorst, 2003).
Synthesis and crystallization
Allyl 3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-β-D-glucopyranoside 1.
To a stirring solution of 3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-β-D-glucopyranosyl bromide (0.704 g, 1.41 mmol) (Lemieux et al., 1977) in anhydrous dichloromethane (10 ml) was added allyl alcohol (0.812 g, 0.953 ml, 14 mmol), tetramethylurea (0.205 g, 0.211 ml, 1.77 mmol), and silver trifluoromethanesulfonate (0.398 mg, 1.55 mmol, dried by evaporation from benzene and high vacuum). The flask was wrapped with aluminium foil and the reaction stirred at room temperature. Progress of the reaction was monitored by on aluminium-backed silica gel plates visualized with Hanessian stain. After 3 h dichloromethane (25 ml) was added and solids were removed by filtration through a pad of Celite. The filtrate was transferred to a separatory funnel and washed with saturated aqueous NaHCO3 solution, saturated aqueous NaCl solution, dried (Na2SO4), and concentrated under reduced pressure to give crude product that was purified by flash (Still et al., 1978) with 40% ethyl acetate/hexane to give crystalline allyl glycoside; yield, 0.46 g (69%): Rf 0.26 (40% ethyl acetate-hexanes), m.p. 379–381 K, lit. m.p. 382–383 K (Kiso & Anderson, 1985), [α]D +39.7 (c, 1.0, chloroform, lit. [α]D +37 (Ibid.). The 1H NMR data for 1 matched that reported (Ibid.)
Refinement
of the molecule was known from the synthetic route and set consistent with this information. Upon initial poorly shaped displacement ellipsoids suggested a possible positional disorder of the allyl group. Attempts to refine this disorder were unsuccessful, and so the displacement parameters of allyl group atoms (C7, C8, C9) were refined with the aid of rigid bond restraints and similarity restraints on the anisotropic displacement parameters of nearby atoms, as well as a weak restraint to encourage approximately isotropic behavior. Additional crystal data, data collection and structure details are summarized in Table 1Structural data
CCDC reference: 1500891
10.1107/S2414314616013638/lh4012sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2414314616013638/lh4012Isup2.hkl
Supporting information file. DOI: 10.1107/S2414314616013638/lh4012Isup3.cdx
Data collection: APEX2 (Bruker, 2013); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C23H25NO10 | Dx = 1.350 Mg m−3 |
Mr = 475.44 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P212121 | Cell parameters from 7270 reflections |
a = 5.6873 (1) Å | θ = 2.5–23.4° |
b = 13.8090 (3) Å | µ = 0.11 mm−1 |
c = 29.7776 (6) Å | T = 100 K |
V = 2338.61 (8) Å3 | Block, colourless |
Z = 4 | 0.15 × 0.15 × 0.10 mm |
F(000) = 1000 |
Bruker APEXII CCD diffractometer | 5380 independent reflections |
Radiation source: sealed tube | 4500 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.062 |
Detector resolution: 8 pixels mm-1 | θmax = 27.5°, θmin = 1.6° |
ω and φ scans | h = −7→7 |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | k = −17→17 |
Tmin = 0.691, Tmax = 0.746 | l = −38→38 |
46038 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.036 | w = 1/[σ2(Fo2) + (0.0288P)2 + 0.5249P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.077 | (Δ/σ)max = 0.001 |
S = 1.03 | Δρmax = 0.20 e Å−3 |
5380 reflections | Δρmin = −0.18 e Å−3 |
310 parameters | Absolute structure: Flack x determined using 1685 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
41 restraints | Absolute structure parameter: −0.6 (4) |
Primary atom site location: structure-invariant direct methods |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O3 | 0.2553 (3) | 0.46285 (10) | 0.67489 (5) | 0.0204 (3) | |
O5 | 0.5381 (3) | 0.12299 (11) | 0.65519 (5) | 0.0242 (4) | |
O4 | 0.5249 (3) | 0.31082 (11) | 0.71755 (5) | 0.0222 (3) | |
O1 | 0.6786 (3) | 0.28757 (10) | 0.59977 (5) | 0.0231 (4) | |
O10 | 0.8145 (3) | 0.59507 (11) | 0.62906 (5) | 0.0257 (4) | |
O9 | 0.1351 (3) | 0.53828 (12) | 0.55059 (5) | 0.0266 (4) | |
O2 | 0.6391 (3) | 0.38688 (11) | 0.53945 (5) | 0.0277 (4) | |
O6 | 0.7384 (3) | −0.01621 (11) | 0.66104 (6) | 0.0316 (4) | |
O8 | 0.4357 (3) | 0.54328 (14) | 0.73116 (6) | 0.0336 (4) | |
O7 | 0.1550 (3) | 0.25372 (14) | 0.72336 (6) | 0.0379 (5) | |
N1 | 0.4727 (3) | 0.54214 (13) | 0.59438 (6) | 0.0193 (4) | |
C19 | 0.6429 (4) | 0.61102 (16) | 0.60621 (7) | 0.0211 (5) | |
C16 | 0.2979 (4) | 0.58224 (16) | 0.56677 (7) | 0.0206 (5) | |
C2 | 0.4748 (4) | 0.44030 (15) | 0.60714 (7) | 0.0201 (5) | |
H2 | 0.3260 | 0.4107 | 0.5956 | 0.024* | |
C10 | 0.2579 (4) | 0.51553 (16) | 0.71358 (7) | 0.0225 (5) | |
C1 | 0.6795 (4) | 0.38592 (16) | 0.58531 (7) | 0.0226 (5) | |
H1 | 0.8328 | 0.4177 | 0.5926 | 0.027* | |
C14 | 0.5528 (4) | 0.02604 (16) | 0.65995 (8) | 0.0229 (5) | |
C3 | 0.4764 (4) | 0.42761 (15) | 0.65811 (7) | 0.0193 (4) | |
H3 | 0.6093 | 0.4650 | 0.6717 | 0.023* | |
C4 | 0.4985 (4) | 0.32114 (15) | 0.66975 (7) | 0.0196 (5) | |
H4 | 0.3549 | 0.2856 | 0.6595 | 0.023* | |
C17 | 0.3591 (4) | 0.68644 (16) | 0.56204 (7) | 0.0215 (5) | |
C18 | 0.5673 (4) | 0.70329 (16) | 0.58524 (7) | 0.0211 (5) | |
C23 | 0.6683 (4) | 0.79430 (16) | 0.58652 (8) | 0.0255 (5) | |
H23 | 0.8093 | 0.8060 | 0.6027 | 0.031* | |
C5 | 0.7146 (4) | 0.27908 (16) | 0.64710 (7) | 0.0219 (5) | |
H5 | 0.8556 | 0.3181 | 0.6558 | 0.026* | |
C12 | 0.3393 (5) | 0.27364 (16) | 0.74066 (8) | 0.0254 (5) | |
C6 | 0.7580 (4) | 0.17480 (16) | 0.65837 (8) | 0.0255 (5) | |
H6A | 0.8739 | 0.1468 | 0.6372 | 0.031* | |
H6B | 0.8220 | 0.1693 | 0.6892 | 0.031* | |
C21 | 0.3465 (5) | 0.85174 (17) | 0.54017 (8) | 0.0293 (6) | |
H21 | 0.2724 | 0.9038 | 0.5248 | 0.035* | |
C20 | 0.2442 (5) | 0.76010 (16) | 0.53936 (8) | 0.0256 (5) | |
H20 | 0.1010 | 0.7486 | 0.5238 | 0.031* | |
C22 | 0.5556 (5) | 0.86812 (17) | 0.56314 (8) | 0.0294 (6) | |
H22 | 0.6229 | 0.9311 | 0.5629 | 0.035* | |
C15 | 0.3171 (4) | −0.01948 (18) | 0.66364 (9) | 0.0296 (6) | |
H15A | 0.3025 | −0.0514 | 0.6929 | 0.044* | |
H15B | 0.2979 | −0.0675 | 0.6397 | 0.044* | |
H15C | 0.1955 | 0.0304 | 0.6608 | 0.044* | |
C13 | 0.3950 (5) | 0.26533 (18) | 0.78949 (8) | 0.0341 (6) | |
H13A | 0.5642 | 0.2548 | 0.7933 | 0.051* | |
H13B | 0.3085 | 0.2106 | 0.8023 | 0.051* | |
H13C | 0.3488 | 0.3251 | 0.8049 | 0.051* | |
C11 | 0.0143 (4) | 0.53125 (19) | 0.72999 (8) | 0.0306 (6) | |
H11A | −0.0798 | 0.5614 | 0.7062 | 0.046* | |
H11B | 0.0175 | 0.5738 | 0.7563 | 0.046* | |
H11C | −0.0557 | 0.4689 | 0.7383 | 0.046* | |
C7 | 0.8274 (5) | 0.34770 (18) | 0.51328 (8) | 0.0360 (6) | |
H7A | 0.8399 | 0.2771 | 0.5185 | 0.043* | |
H7B | 0.9780 | 0.3782 | 0.5222 | 0.043* | |
C8 | 0.7798 (7) | 0.3669 (2) | 0.46500 (9) | 0.0510 (9) | |
H8 | 0.8901 | 0.3435 | 0.4436 | 0.061* | |
C9 | 0.5962 (8) | 0.4141 (2) | 0.44989 (10) | 0.0618 (11) | |
H9A | 0.4824 | 0.4386 | 0.4703 | 0.074* | |
H9B | 0.5768 | 0.4238 | 0.4185 | 0.074* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O3 | 0.0195 (8) | 0.0234 (8) | 0.0184 (8) | 0.0030 (7) | −0.0004 (6) | −0.0015 (6) |
O5 | 0.0216 (8) | 0.0208 (8) | 0.0301 (9) | 0.0019 (7) | −0.0020 (7) | 0.0024 (7) |
O4 | 0.0251 (8) | 0.0240 (8) | 0.0177 (8) | −0.0017 (7) | −0.0025 (7) | 0.0030 (6) |
O1 | 0.0285 (9) | 0.0194 (8) | 0.0213 (8) | 0.0015 (7) | 0.0013 (7) | −0.0001 (6) |
O10 | 0.0230 (9) | 0.0290 (9) | 0.0251 (8) | 0.0002 (7) | −0.0034 (7) | 0.0008 (7) |
O9 | 0.0262 (9) | 0.0274 (9) | 0.0263 (8) | −0.0031 (7) | −0.0053 (7) | 0.0024 (7) |
O2 | 0.0382 (10) | 0.0272 (9) | 0.0176 (8) | 0.0039 (8) | 0.0042 (7) | −0.0010 (7) |
O6 | 0.0239 (9) | 0.0223 (9) | 0.0487 (11) | 0.0042 (7) | −0.0016 (9) | −0.0004 (8) |
O8 | 0.0266 (9) | 0.0419 (10) | 0.0323 (9) | −0.0017 (8) | −0.0005 (8) | −0.0138 (8) |
O7 | 0.0304 (10) | 0.0493 (11) | 0.0340 (10) | −0.0106 (9) | −0.0002 (9) | 0.0106 (9) |
N1 | 0.0216 (9) | 0.0179 (9) | 0.0183 (9) | 0.0003 (8) | −0.0003 (8) | 0.0018 (7) |
C19 | 0.0223 (12) | 0.0236 (12) | 0.0173 (11) | −0.0004 (9) | 0.0054 (10) | −0.0015 (9) |
C16 | 0.0225 (12) | 0.0232 (11) | 0.0160 (10) | 0.0015 (10) | 0.0017 (9) | 0.0001 (9) |
C2 | 0.0217 (11) | 0.0195 (11) | 0.0192 (10) | −0.0003 (9) | −0.0005 (9) | 0.0012 (9) |
C10 | 0.0278 (12) | 0.0215 (12) | 0.0181 (11) | 0.0032 (10) | −0.0014 (10) | 0.0005 (9) |
C1 | 0.0277 (12) | 0.0208 (11) | 0.0194 (11) | 0.0013 (9) | 0.0012 (10) | 0.0009 (9) |
C14 | 0.0258 (12) | 0.0225 (12) | 0.0205 (11) | 0.0018 (10) | −0.0010 (10) | 0.0001 (9) |
C3 | 0.0180 (10) | 0.0204 (11) | 0.0194 (10) | 0.0020 (9) | −0.0006 (9) | −0.0004 (9) |
C4 | 0.0226 (11) | 0.0201 (11) | 0.0161 (10) | 0.0001 (9) | −0.0033 (9) | 0.0017 (8) |
C17 | 0.0245 (11) | 0.0220 (11) | 0.0179 (11) | 0.0004 (10) | 0.0033 (10) | 0.0003 (9) |
C18 | 0.0243 (11) | 0.0223 (11) | 0.0167 (10) | −0.0003 (9) | 0.0033 (9) | −0.0009 (9) |
C23 | 0.0299 (12) | 0.0255 (12) | 0.0210 (11) | −0.0033 (10) | 0.0030 (10) | −0.0033 (9) |
C5 | 0.0225 (12) | 0.0215 (11) | 0.0218 (11) | 0.0012 (9) | −0.0021 (9) | 0.0020 (9) |
C12 | 0.0318 (13) | 0.0185 (11) | 0.0259 (12) | −0.0013 (10) | 0.0023 (11) | 0.0021 (9) |
C6 | 0.0209 (11) | 0.0230 (11) | 0.0325 (13) | 0.0001 (10) | −0.0034 (11) | 0.0007 (10) |
C21 | 0.0404 (14) | 0.0217 (12) | 0.0259 (12) | 0.0065 (11) | 0.0041 (12) | 0.0019 (10) |
C20 | 0.0294 (12) | 0.0260 (12) | 0.0213 (11) | 0.0056 (11) | 0.0017 (10) | 0.0013 (10) |
C22 | 0.0428 (15) | 0.0207 (12) | 0.0249 (12) | −0.0051 (11) | 0.0078 (11) | −0.0021 (10) |
C15 | 0.0247 (13) | 0.0280 (13) | 0.0360 (14) | 0.0009 (10) | 0.0024 (11) | 0.0018 (11) |
C13 | 0.0537 (17) | 0.0261 (13) | 0.0226 (12) | −0.0088 (12) | 0.0006 (12) | 0.0017 (10) |
C11 | 0.0274 (13) | 0.0401 (15) | 0.0243 (12) | 0.0056 (12) | −0.0004 (10) | −0.0077 (11) |
C7 | 0.0480 (16) | 0.0289 (14) | 0.0310 (14) | −0.0037 (12) | 0.0175 (13) | −0.0068 (11) |
C8 | 0.093 (3) | 0.0335 (15) | 0.0264 (15) | −0.0289 (17) | 0.0232 (17) | −0.0101 (12) |
C9 | 0.110 (3) | 0.051 (2) | 0.0239 (15) | −0.036 (2) | −0.0117 (17) | 0.0047 (14) |
O3—C10 | 1.362 (3) | C17—C20 | 1.385 (3) |
O3—C3 | 1.438 (3) | C18—C23 | 1.382 (3) |
O5—C14 | 1.349 (3) | C23—H23 | 0.9500 |
O5—C6 | 1.444 (3) | C23—C22 | 1.391 (3) |
O4—C4 | 1.438 (2) | C5—H5 | 1.0000 |
O4—C12 | 1.360 (3) | C5—C6 | 1.499 (3) |
O1—C1 | 1.425 (3) | C12—C13 | 1.493 (3) |
O1—C5 | 1.429 (3) | C6—H6A | 0.9900 |
O10—C19 | 1.210 (3) | C6—H6B | 0.9900 |
O9—C16 | 1.208 (3) | C21—H21 | 0.9500 |
O2—C1 | 1.385 (3) | C21—C20 | 1.393 (3) |
O2—C7 | 1.431 (3) | C21—C22 | 1.390 (4) |
O6—C14 | 1.206 (3) | C20—H20 | 0.9500 |
O8—C10 | 1.201 (3) | C22—H22 | 0.9500 |
O7—C12 | 1.200 (3) | C15—H15A | 0.9800 |
N1—C19 | 1.402 (3) | C15—H15B | 0.9800 |
N1—C16 | 1.404 (3) | C15—H15C | 0.9800 |
N1—C2 | 1.457 (3) | C13—H13A | 0.9800 |
C19—C18 | 1.483 (3) | C13—H13B | 0.9800 |
C16—C17 | 1.487 (3) | C13—H13C | 0.9800 |
C2—H2 | 1.0000 | C11—H11A | 0.9800 |
C2—C1 | 1.530 (3) | C11—H11B | 0.9800 |
C2—C3 | 1.528 (3) | C11—H11C | 0.9800 |
C10—C11 | 1.485 (3) | C7—H7A | 0.9900 |
C1—H1 | 1.0000 | C7—H7B | 0.9900 |
C14—C15 | 1.484 (3) | C7—C8 | 1.487 (4) |
C3—H3 | 1.0000 | C8—H8 | 0.9500 |
C3—C4 | 1.516 (3) | C8—C9 | 1.310 (5) |
C4—H4 | 1.0000 | C9—H9A | 0.9500 |
C4—C5 | 1.518 (3) | C9—H9B | 0.9500 |
C17—C18 | 1.391 (3) | ||
C10—O3—C3 | 117.72 (17) | O1—C5—H5 | 109.1 |
C14—O5—C6 | 115.53 (17) | O1—C5—C6 | 108.86 (18) |
C12—O4—C4 | 117.20 (17) | C4—C5—H5 | 109.1 |
C1—O1—C5 | 112.05 (16) | C6—C5—C4 | 113.65 (19) |
C1—O2—C7 | 114.16 (19) | C6—C5—H5 | 109.1 |
C19—N1—C16 | 111.62 (17) | O4—C12—C13 | 110.9 (2) |
C19—N1—C2 | 125.71 (18) | O7—C12—O4 | 123.2 (2) |
C16—N1—C2 | 122.64 (18) | O7—C12—C13 | 125.9 (2) |
O10—C19—N1 | 125.1 (2) | O5—C6—C5 | 108.59 (18) |
O10—C19—C18 | 128.8 (2) | O5—C6—H6A | 110.0 |
N1—C19—C18 | 106.08 (19) | O5—C6—H6B | 110.0 |
O9—C16—N1 | 125.3 (2) | C5—C6—H6A | 110.0 |
O9—C16—C17 | 128.9 (2) | C5—C6—H6B | 110.0 |
N1—C16—C17 | 105.75 (18) | H6A—C6—H6B | 108.4 |
N1—C2—H2 | 107.3 | C20—C21—H21 | 119.5 |
N1—C2—C1 | 111.67 (18) | C22—C21—H21 | 119.5 |
N1—C2—C3 | 111.70 (17) | C22—C21—C20 | 120.9 (2) |
C1—C2—H2 | 107.3 | C17—C20—C21 | 117.5 (2) |
C3—C2—H2 | 107.3 | C17—C20—H20 | 121.2 |
C3—C2—C1 | 111.17 (18) | C21—C20—H20 | 121.2 |
O3—C10—C11 | 110.26 (19) | C23—C22—H22 | 119.3 |
O8—C10—O3 | 123.2 (2) | C21—C22—C23 | 121.4 (2) |
O8—C10—C11 | 126.5 (2) | C21—C22—H22 | 119.3 |
O1—C1—C2 | 109.66 (17) | C14—C15—H15A | 109.5 |
O1—C1—H1 | 110.8 | C14—C15—H15B | 109.5 |
O2—C1—O1 | 107.83 (17) | C14—C15—H15C | 109.5 |
O2—C1—C2 | 106.73 (18) | H15A—C15—H15B | 109.5 |
O2—C1—H1 | 110.8 | H15A—C15—H15C | 109.5 |
C2—C1—H1 | 110.8 | H15B—C15—H15C | 109.5 |
O5—C14—C15 | 111.83 (19) | C12—C13—H13A | 109.5 |
O6—C14—O5 | 122.5 (2) | C12—C13—H13B | 109.5 |
O6—C14—C15 | 125.7 (2) | C12—C13—H13C | 109.5 |
O3—C3—C2 | 107.53 (17) | H13A—C13—H13B | 109.5 |
O3—C3—H3 | 110.2 | H13A—C13—H13C | 109.5 |
O3—C3—C4 | 108.74 (18) | H13B—C13—H13C | 109.5 |
C2—C3—H3 | 110.2 | C10—C11—H11A | 109.5 |
C4—C3—C2 | 109.80 (17) | C10—C11—H11B | 109.5 |
C4—C3—H3 | 110.2 | C10—C11—H11C | 109.5 |
O4—C4—C3 | 109.33 (17) | H11A—C11—H11B | 109.5 |
O4—C4—H4 | 109.8 | H11A—C11—H11C | 109.5 |
O4—C4—C5 | 108.51 (17) | H11B—C11—H11C | 109.5 |
C3—C4—H4 | 109.8 | O2—C7—H7A | 109.9 |
C3—C4—C5 | 109.68 (18) | O2—C7—H7B | 109.9 |
C5—C4—H4 | 109.8 | O2—C7—C8 | 108.8 (3) |
C18—C17—C16 | 108.31 (19) | H7A—C7—H7B | 108.3 |
C20—C17—C16 | 130.3 (2) | C8—C7—H7A | 109.9 |
C20—C17—C18 | 121.4 (2) | C8—C7—H7B | 109.9 |
C17—C18—C19 | 108.20 (19) | C7—C8—H8 | 117.8 |
C23—C18—C19 | 130.5 (2) | C9—C8—C7 | 124.5 (3) |
C23—C18—C17 | 121.3 (2) | C9—C8—H8 | 117.8 |
C18—C23—H23 | 121.3 | C8—C9—H9A | 120.0 |
C18—C23—C22 | 117.4 (2) | C8—C9—H9B | 120.0 |
C22—C23—H23 | 121.3 | H9A—C9—H9B | 120.0 |
O1—C5—C4 | 106.90 (17) | ||
O3—C3—C4—O4 | −68.6 (2) | C2—C3—C4—O4 | 173.96 (17) |
O3—C3—C4—C5 | 172.50 (16) | C2—C3—C4—C5 | 55.1 (2) |
O4—C4—C5—O1 | 178.04 (16) | C10—O3—C3—C2 | −139.16 (18) |
O4—C4—C5—C6 | 57.9 (2) | C10—O3—C3—C4 | 102.0 (2) |
O1—C5—C6—O5 | −73.7 (2) | C1—O1—C5—C4 | 67.7 (2) |
O10—C19—C18—C17 | 179.9 (2) | C1—O1—C5—C6 | −169.15 (18) |
O10—C19—C18—C23 | −0.9 (4) | C1—O2—C7—C8 | −171.1 (2) |
O9—C16—C17—C18 | −177.5 (2) | C1—C2—C3—O3 | −168.13 (17) |
O9—C16—C17—C20 | 2.1 (4) | C1—C2—C3—C4 | −50.0 (2) |
O2—C7—C8—C9 | 1.3 (4) | C14—O5—C6—C5 | 173.51 (18) |
N1—C19—C18—C17 | −0.1 (2) | C3—O3—C10—O8 | 9.0 (3) |
N1—C19—C18—C23 | 179.1 (2) | C3—O3—C10—C11 | −170.29 (18) |
N1—C16—C17—C18 | 1.9 (2) | C3—C2—C1—O1 | 52.8 (2) |
N1—C16—C17—C20 | −178.4 (2) | C3—C2—C1—O2 | 169.36 (17) |
N1—C2—C1—O1 | 178.30 (17) | C3—C4—C5—O1 | −62.6 (2) |
N1—C2—C1—O2 | −65.2 (2) | C3—C4—C5—C6 | 177.28 (18) |
N1—C2—C3—O3 | 66.4 (2) | C4—O4—C12—O7 | −3.4 (3) |
N1—C2—C3—C4 | −175.45 (18) | C4—O4—C12—C13 | 178.73 (19) |
C19—N1—C16—O9 | 177.5 (2) | C4—C5—C6—O5 | 45.3 (3) |
C19—N1—C16—C17 | −2.0 (2) | C17—C18—C23—C22 | −1.0 (3) |
C19—N1—C2—C1 | −66.5 (3) | C18—C17—C20—C21 | 0.7 (3) |
C19—N1—C2—C3 | 58.7 (3) | C18—C23—C22—C21 | 1.4 (3) |
C19—C18—C23—C22 | 179.9 (2) | C5—O1—C1—O2 | −178.89 (17) |
C16—N1—C19—O10 | −178.6 (2) | C5—O1—C1—C2 | −63.0 (2) |
C16—N1—C19—C18 | 1.4 (2) | C12—O4—C4—C3 | 108.5 (2) |
C16—N1—C2—C1 | 111.3 (2) | C12—O4—C4—C5 | −131.9 (2) |
C16—N1—C2—C3 | −123.5 (2) | C6—O5—C14—O6 | −9.1 (3) |
C16—C17—C18—C19 | −1.1 (2) | C6—O5—C14—C15 | 170.7 (2) |
C16—C17—C18—C23 | 179.6 (2) | C20—C17—C18—C19 | 179.2 (2) |
C16—C17—C20—C21 | −178.9 (2) | C20—C17—C18—C23 | −0.1 (3) |
C2—N1—C19—O10 | −0.6 (3) | C20—C21—C22—C23 | −0.8 (4) |
C2—N1—C19—C18 | 179.37 (19) | C22—C21—C20—C17 | −0.3 (3) |
C2—N1—C16—O9 | −0.6 (3) | C7—O2—C1—O1 | −68.5 (2) |
C2—N1—C16—C17 | 179.90 (18) | C7—O2—C1—C2 | 173.74 (18) |
Acknowledgements
The authors thank Villanova University for financial support of this work.
References
Bruker (2013). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2014). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Hanessian, S. & Banoub, J. (1977a). Carbohydr. Res. 53, C13–C16. Google Scholar
Hanessian, S. & Banoub, J. (1977b). Synthetic Methods for Carbohydrates, ACS Symposium Series; 39, edited by H. S. El Khadem, pp. 36–63. Washington, DC: American Chemical Society. Google Scholar
Johnson, D. A., Keegan, D. S., Sowell, C. G., Livesay, M. T., Johnson, C. L., Taubner, L. M., Harris, A., Myers, K. R., Thompson, J. D., Gustafson, G. L., Rhodes, M. J., Ulrich, J. T., Ward, J. R., Yorgensen, Y. M., Cantrell, J. L. & Brookshire, V. G. (1999). J. Med. Chem. 42, 4640–4649. Google Scholar
Kerns, R. J. & Wei, P. (2012). Glycobiology and Drug Design, ACS Symposium Series; 1102, edited by A. A. Klyosov, pp. 235–236. Washington, DC: American Chemical Society. Google Scholar
Kiso, M. & Anderson, L. (1985). Carbohydr. Res. 136, 309–323. Google Scholar
Lemieux, R. U., Takeda, T. & Chung, B. Y. (1977). Synthetic Methods for Carbohydrates, ACS Symposium Series; 39, edited by H. S. El Khadem, pp. 90–115. Washington, DC: American Chemical Society. Google Scholar
Lindhorst, T. K. (2003). Essentials of Carbohydrate Chemistry and Biochemistry, pp. 97–100 Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA. Google Scholar
Miquel, N., Vignando, S., Russo, G. & Lay, L. (2004). Synlett, pp. 0341–0343. Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Pinto, B. M., Reimer, K. B. & Tixidre, A. (1991). Carbohydr. Res. 210, 199–219. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Stick, R. V. & Williams, S. J. (2009). Carbohydrates: The Essential Molecules of Life, pp. 174–177. Oxford, UK; Amsterdam, The Netherlands: Elsevier. Google Scholar
Still, W. C., Kahn, M. & Mitra, A. (1978). J. Org. Chem. 43, 2923–2925. CrossRef CAS Web of Science Google Scholar
Wessel, H.-P., Iversen, T. & Bundle, D. R. (1984). Carbohydr. Res. 130, 5–21. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.