organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Allyl 3,4,6-tri-O-acetyl-2-de­­oxy-2-phthalimido-β-D-gluco­pyran­oside

aDepartment of Chemistry, Villanova University, 800 E Lancaster Avenue, Villanova, PA, USA
*Correspondence e-mail: robert.giuliano@villanova.edu

Edited by A. J. Lough, University of Toronto, Canada (Received 13 August 2016; accepted 24 August 2016; online 31 August 2016)

The protected glycoside of 2-amino-2-de­oxy­glucose (glucosa­mine), namely allyl 3,4,6-tri-O-acetyl-2-de­oxy-2-phthalimido-β-D-gluco­pyran­oside, C23H25NO10, was synthesized from the glycosyl bromide. Crystallographic analysis confirmed the β-anomeric configuration and showed an approximately orthogonal orientation of the phthalimido group with respect to the pyran­ose ring. The absolute configuration of the mol­ecule was known from the synthetic route and assigned accordingly.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Aside from its presence in chitin, the second most abundant biopolymer in nature, N-acetyl­glucosa­mine (GlcNAc) occurs widely in glycans and bioconjugates in both α- and β-linked glycosides as well as in other biologically important substances such as heparins and tunicamycins (Stick & Williams, 2009[Stick, R. V. & Williams, S. J. (2009). Carbohydrates: The Essential Molecules of Life, pp. 174-177. Oxford, UK; Amsterdam, The Netherlands: Elsevier.]; Kerns & Wei, 2012[Kerns, R. J. & Wei, P. (2012). Glycobiology and Drug Design, ACS Symposium Series; 1102, edited by A. A. Klyosov, pp. 235-236. Washington, DC: American Chemical Society.]; Lindhorst, 2003[Lindhorst, T. K. (2003). Essentials of Carbohydrate Chemistry and Biochemistry, pp. 97-100 Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.]). Owing to the role of GlcNAc-containing glycosides in biologically active materials and cell surface glycans, there has been much inter­est in their chemical synthesis (Ibid.). The title allyl glycoside (1) has been used previously as an inter­mediate in the synthesis of oligosaccharide haptens of Streptococci Group A cell-wall polysaccharides (Pinto et al., 1991[Pinto, B. M., Reimer, K. B. & Tixidre, A. (1991). Carbohydr. Res. 210, 199-219.]) and its analogous tert-butyl glycoside was used in a synthetic program aimed at gangliotriosylceramide, a tumor-specific cell-surface marker (Wessel et al., 1984[Wessel, H.-P., Iversen, T. & Bundle, D. R. (1984). Carbohydr. Res. 130, 5-21.]). Our inter­est in the synthesis of the lipid A disaccharide (Johnson et al., 1999[Johnson, D. A., Keegan, D. S., Sowell, C. G., Livesay, M. T., Johnson, C. L., Taubner, L. M., Harris, A., Myers, K. R., Thompson, J. D., Gustafson, G. L., Rhodes, M. J., Ulrich, J. T., Ward, J. R., Yorgensen, Y. M., Cantrell, J. L. & Brookshire, V. G. (1999). J. Med. Chem. 42, 4640-4649.]), which is comprised of two β-(1→6) linked GlcNAc units, required the preparation of allyl glycoside 1 for use as an inter­mediate. The synthesis of 1 was reported using a ferric chloride-catalyzed glycosidation of allyl alcohol with 1,3,4,6-tetra-O-acetyl-2-de­oxy-2-phthalimido-β-D-gluco­pyran­oside (Kiso & Anderson, 1985[Kiso, M. & Anderson, L. (1985). Carbohydr. Res. 136, 309-323.]). Other syntheses have been reported (Miquel et al., 2004[Miquel, N., Vignando, S., Russo, G. & Lay, L. (2004). Synlett, pp. 0341-0343.]). Our route was based on a modification in which the glycosidation of allyl alcohol with 3,4,6-tri-O-acetyl-2-de­oxy-2-phthalimido-β-D-gluco­pyranosyl bromide occurred in the presence of silver tri­fluoro­methane­sulfonate and tetra­methyl­urea (Hanessian & Banoub, 1977a[Hanessian, S. & Banoub, J. (1977a). Carbohydr. Res. 53, C13-C16.],b[Hanessian, S. & Banoub, J. (1977b). Synthetic Methods for Carbohydrates, ACS Symposium Series; 39, edited by H. S. El Khadem, pp. 36-63. Washington, DC: American Chemical Society.]) in high yield and stereoselectivity. Chromatographic purification of 1 gave product suitable for crystallographic analysis.

The pyran­ose ring of 1 adopts a chair conformation with little evidence of distortion or puckering (Fig. 1[link]). The N1—C2—C1—O2 and N1—C2—C3—O3 torsion angles are −65.2 (2) and 66.4 (2)°, respectively, corresponding to gauche relationships between the C1 all­yloxy group and the C2 phthalimido group and between the C2 phthalimido group and the C3 acet­oxy group. The phthalimido group is approximately orthogonal to a plane that bis­ects the pyran­ose ring at C2 and C5. The stereoselectivity for the formation of the 1,2-trans product in glycosidations of sugars that have a phthalimido group at C2 is ascribed to the steric hindrance that this relatively large group provides on the α-face of the pyran­ose ring (Stick & Williams, 2009[Stick, R. V. & Williams, S. J. (2009). Carbohydrates: The Essential Molecules of Life, pp. 174-177. Oxford, UK; Amsterdam, The Netherlands: Elsevier.]) or through neighboring group participation involving a phthalimide carbonyl group (Lindhorst, 2003[Lindhorst, T. K. (2003). Essentials of Carbohydrate Chemistry and Biochemistry, pp. 97-100 Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.]).

[Figure 1]
Figure 1
Two views of the mol­ecular structure of allyl 3,4,6-tri-O-acetyl-2-de­oxy-2-phthalimido-β-D-gluco­pyran­oside with displacement ellipsoids at the 40% probability level.

Synthesis and crystallization

Allyl 3,4,6-tri-O-acetyl-2-de­oxy-2-phthalimido-β-D-gluco­pyrano­side 1.

To a stirring solution of 3,4,6-tri-O-acetyl-2-de­oxy-2-phthalimido-β-D-gluco­pyranosyl bromide (0.704 g, 1.41 mmol) (Lemieux et al., 1977[Lemieux, R. U., Takeda, T. & Chung, B. Y. (1977). Synthetic Methods for Carbohydrates, ACS Symposium Series; 39, edited by H. S. El Khadem, pp. 90-115. Washington, DC: American Chemical Society.]) in anhydrous di­chloro­methane (10 ml) was added allyl alcohol (0.812 g, 0.953 ml, 14 mmol), tetra­methyl­urea (0.205 g, 0.211 ml, 1.77 mmol), and silver tri­fluoro­methane­sulfonate (0.398 mg, 1.55 mmol, dried by evaporation from benzene and high vacuum). The flask was wrapped with aluminium foil and the reaction stirred at room temperature. Progress of the reaction was monitored by thin-layer chromatography on aluminium-backed silica gel plates visualized with Hanessian stain. After 3 h di­chloro­methane (25 ml) was added and solids were removed by filtration through a pad of Celite. The filtrate was transferred to a separatory funnel and washed with saturated aqueous NaHCO3 solution, saturated aqueous NaCl solution, dried (Na2SO4), and concentrated under reduced pressure to give crude product that was purified by flash chromatography (Still et al., 1978[Still, W. C., Kahn, M. & Mitra, A. (1978). J. Org. Chem. 43, 2923-2925.]) with 40% ethyl acetate/hexane to give crystalline allyl glycoside; yield, 0.46 g (69%): Rf 0.26 (40% ethyl acetate-hexa­nes), m.p. 379–381 K, lit. m.p. 382–383 K (Kiso & Anderson, 1985[Kiso, M. & Anderson, L. (1985). Carbohydr. Res. 136, 309-323.]), [α]D +39.7 (c, 1.0, chloro­form, lit. [α]D +37 (Ibid.). The 1H NMR data for 1 matched that reported (Ibid.)

Refinement

The absolute configuration of the mol­ecule was known from the synthetic route and set consistent with this information. Upon initial refinement, poorly shaped displacement ellipsoids suggested a possible positional disorder of the allyl group. Attempts to refine this disorder were unsuccessful, and so the displacement parameters of allyl group atoms (C7, C8, C9) were refined with the aid of rigid bond restraints and similarity restraints on the anisotropic displacement parameters of nearby atoms, as well as a weak restraint to encourage approximately isotropic behavior. Additional crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula C23H25NO10
Mr 475.44
Crystal system, space group Orthorhombic, P212121
Temperature (K) 100
a, b, c (Å) 5.6873 (1), 13.8090 (3), 29.7776 (6)
V3) 2338.61 (8)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.15 × 0.15 × 0.10
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.691, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 46038, 5380, 4500
Rint 0.062
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.077, 1.03
No. of reflections 5380
No. of parameters 310
No. of restraints 41
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.20, −0.18
Absolute structure Flack x determined using 1685 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.6 (4)
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Allyl 3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-β-D-glucopyranoside top
Crystal data top
C23H25NO10Dx = 1.350 Mg m3
Mr = 475.44Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 7270 reflections
a = 5.6873 (1) Åθ = 2.5–23.4°
b = 13.8090 (3) ŵ = 0.11 mm1
c = 29.7776 (6) ÅT = 100 K
V = 2338.61 (8) Å3Block, colourless
Z = 40.15 × 0.15 × 0.10 mm
F(000) = 1000
Data collection top
Bruker APEXII CCD
diffractometer
5380 independent reflections
Radiation source: sealed tube4500 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
Detector resolution: 8 pixels mm-1θmax = 27.5°, θmin = 1.6°
ω and φ scansh = 77
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
k = 1717
Tmin = 0.691, Tmax = 0.746l = 3838
46038 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.036 w = 1/[σ2(Fo2) + (0.0288P)2 + 0.5249P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.077(Δ/σ)max = 0.001
S = 1.03Δρmax = 0.20 e Å3
5380 reflectionsΔρmin = 0.18 e Å3
310 parametersAbsolute structure: Flack x determined using 1685 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
41 restraintsAbsolute structure parameter: 0.6 (4)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.2553 (3)0.46285 (10)0.67489 (5)0.0204 (3)
O50.5381 (3)0.12299 (11)0.65519 (5)0.0242 (4)
O40.5249 (3)0.31082 (11)0.71755 (5)0.0222 (3)
O10.6786 (3)0.28757 (10)0.59977 (5)0.0231 (4)
O100.8145 (3)0.59507 (11)0.62906 (5)0.0257 (4)
O90.1351 (3)0.53828 (12)0.55059 (5)0.0266 (4)
O20.6391 (3)0.38688 (11)0.53945 (5)0.0277 (4)
O60.7384 (3)0.01621 (11)0.66104 (6)0.0316 (4)
O80.4357 (3)0.54328 (14)0.73116 (6)0.0336 (4)
O70.1550 (3)0.25372 (14)0.72336 (6)0.0379 (5)
N10.4727 (3)0.54214 (13)0.59438 (6)0.0193 (4)
C190.6429 (4)0.61102 (16)0.60621 (7)0.0211 (5)
C160.2979 (4)0.58224 (16)0.56677 (7)0.0206 (5)
C20.4748 (4)0.44030 (15)0.60714 (7)0.0201 (5)
H20.32600.41070.59560.024*
C100.2579 (4)0.51553 (16)0.71358 (7)0.0225 (5)
C10.6795 (4)0.38592 (16)0.58531 (7)0.0226 (5)
H10.83280.41770.59260.027*
C140.5528 (4)0.02604 (16)0.65995 (8)0.0229 (5)
C30.4764 (4)0.42761 (15)0.65811 (7)0.0193 (4)
H30.60930.46500.67170.023*
C40.4985 (4)0.32114 (15)0.66975 (7)0.0196 (5)
H40.35490.28560.65950.023*
C170.3591 (4)0.68644 (16)0.56204 (7)0.0215 (5)
C180.5673 (4)0.70329 (16)0.58524 (7)0.0211 (5)
C230.6683 (4)0.79430 (16)0.58652 (8)0.0255 (5)
H230.80930.80600.60270.031*
C50.7146 (4)0.27908 (16)0.64710 (7)0.0219 (5)
H50.85560.31810.65580.026*
C120.3393 (5)0.27364 (16)0.74066 (8)0.0254 (5)
C60.7580 (4)0.17480 (16)0.65837 (8)0.0255 (5)
H6A0.87390.14680.63720.031*
H6B0.82200.16930.68920.031*
C210.3465 (5)0.85174 (17)0.54017 (8)0.0293 (6)
H210.27240.90380.52480.035*
C200.2442 (5)0.76010 (16)0.53936 (8)0.0256 (5)
H200.10100.74860.52380.031*
C220.5556 (5)0.86812 (17)0.56314 (8)0.0294 (6)
H220.62290.93110.56290.035*
C150.3171 (4)0.01948 (18)0.66364 (9)0.0296 (6)
H15A0.30250.05140.69290.044*
H15B0.29790.06750.63970.044*
H15C0.19550.03040.66080.044*
C130.3950 (5)0.26533 (18)0.78949 (8)0.0341 (6)
H13A0.56420.25480.79330.051*
H13B0.30850.21060.80230.051*
H13C0.34880.32510.80490.051*
C110.0143 (4)0.53125 (19)0.72999 (8)0.0306 (6)
H11A0.07980.56140.70620.046*
H11B0.01750.57380.75630.046*
H11C0.05570.46890.73830.046*
C70.8274 (5)0.34770 (18)0.51328 (8)0.0360 (6)
H7A0.83990.27710.51850.043*
H7B0.97800.37820.52220.043*
C80.7798 (7)0.3669 (2)0.46500 (9)0.0510 (9)
H80.89010.34350.44360.061*
C90.5962 (8)0.4141 (2)0.44989 (10)0.0618 (11)
H9A0.48240.43860.47030.074*
H9B0.57680.42380.41850.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0195 (8)0.0234 (8)0.0184 (8)0.0030 (7)0.0004 (6)0.0015 (6)
O50.0216 (8)0.0208 (8)0.0301 (9)0.0019 (7)0.0020 (7)0.0024 (7)
O40.0251 (8)0.0240 (8)0.0177 (8)0.0017 (7)0.0025 (7)0.0030 (6)
O10.0285 (9)0.0194 (8)0.0213 (8)0.0015 (7)0.0013 (7)0.0001 (6)
O100.0230 (9)0.0290 (9)0.0251 (8)0.0002 (7)0.0034 (7)0.0008 (7)
O90.0262 (9)0.0274 (9)0.0263 (8)0.0031 (7)0.0053 (7)0.0024 (7)
O20.0382 (10)0.0272 (9)0.0176 (8)0.0039 (8)0.0042 (7)0.0010 (7)
O60.0239 (9)0.0223 (9)0.0487 (11)0.0042 (7)0.0016 (9)0.0004 (8)
O80.0266 (9)0.0419 (10)0.0323 (9)0.0017 (8)0.0005 (8)0.0138 (8)
O70.0304 (10)0.0493 (11)0.0340 (10)0.0106 (9)0.0002 (9)0.0106 (9)
N10.0216 (9)0.0179 (9)0.0183 (9)0.0003 (8)0.0003 (8)0.0018 (7)
C190.0223 (12)0.0236 (12)0.0173 (11)0.0004 (9)0.0054 (10)0.0015 (9)
C160.0225 (12)0.0232 (11)0.0160 (10)0.0015 (10)0.0017 (9)0.0001 (9)
C20.0217 (11)0.0195 (11)0.0192 (10)0.0003 (9)0.0005 (9)0.0012 (9)
C100.0278 (12)0.0215 (12)0.0181 (11)0.0032 (10)0.0014 (10)0.0005 (9)
C10.0277 (12)0.0208 (11)0.0194 (11)0.0013 (9)0.0012 (10)0.0009 (9)
C140.0258 (12)0.0225 (12)0.0205 (11)0.0018 (10)0.0010 (10)0.0001 (9)
C30.0180 (10)0.0204 (11)0.0194 (10)0.0020 (9)0.0006 (9)0.0004 (9)
C40.0226 (11)0.0201 (11)0.0161 (10)0.0001 (9)0.0033 (9)0.0017 (8)
C170.0245 (11)0.0220 (11)0.0179 (11)0.0004 (10)0.0033 (10)0.0003 (9)
C180.0243 (11)0.0223 (11)0.0167 (10)0.0003 (9)0.0033 (9)0.0009 (9)
C230.0299 (12)0.0255 (12)0.0210 (11)0.0033 (10)0.0030 (10)0.0033 (9)
C50.0225 (12)0.0215 (11)0.0218 (11)0.0012 (9)0.0021 (9)0.0020 (9)
C120.0318 (13)0.0185 (11)0.0259 (12)0.0013 (10)0.0023 (11)0.0021 (9)
C60.0209 (11)0.0230 (11)0.0325 (13)0.0001 (10)0.0034 (11)0.0007 (10)
C210.0404 (14)0.0217 (12)0.0259 (12)0.0065 (11)0.0041 (12)0.0019 (10)
C200.0294 (12)0.0260 (12)0.0213 (11)0.0056 (11)0.0017 (10)0.0013 (10)
C220.0428 (15)0.0207 (12)0.0249 (12)0.0051 (11)0.0078 (11)0.0021 (10)
C150.0247 (13)0.0280 (13)0.0360 (14)0.0009 (10)0.0024 (11)0.0018 (11)
C130.0537 (17)0.0261 (13)0.0226 (12)0.0088 (12)0.0006 (12)0.0017 (10)
C110.0274 (13)0.0401 (15)0.0243 (12)0.0056 (12)0.0004 (10)0.0077 (11)
C70.0480 (16)0.0289 (14)0.0310 (14)0.0037 (12)0.0175 (13)0.0068 (11)
C80.093 (3)0.0335 (15)0.0264 (15)0.0289 (17)0.0232 (17)0.0101 (12)
C90.110 (3)0.051 (2)0.0239 (15)0.036 (2)0.0117 (17)0.0047 (14)
Geometric parameters (Å, º) top
O3—C101.362 (3)C17—C201.385 (3)
O3—C31.438 (3)C18—C231.382 (3)
O5—C141.349 (3)C23—H230.9500
O5—C61.444 (3)C23—C221.391 (3)
O4—C41.438 (2)C5—H51.0000
O4—C121.360 (3)C5—C61.499 (3)
O1—C11.425 (3)C12—C131.493 (3)
O1—C51.429 (3)C6—H6A0.9900
O10—C191.210 (3)C6—H6B0.9900
O9—C161.208 (3)C21—H210.9500
O2—C11.385 (3)C21—C201.393 (3)
O2—C71.431 (3)C21—C221.390 (4)
O6—C141.206 (3)C20—H200.9500
O8—C101.201 (3)C22—H220.9500
O7—C121.200 (3)C15—H15A0.9800
N1—C191.402 (3)C15—H15B0.9800
N1—C161.404 (3)C15—H15C0.9800
N1—C21.457 (3)C13—H13A0.9800
C19—C181.483 (3)C13—H13B0.9800
C16—C171.487 (3)C13—H13C0.9800
C2—H21.0000C11—H11A0.9800
C2—C11.530 (3)C11—H11B0.9800
C2—C31.528 (3)C11—H11C0.9800
C10—C111.485 (3)C7—H7A0.9900
C1—H11.0000C7—H7B0.9900
C14—C151.484 (3)C7—C81.487 (4)
C3—H31.0000C8—H80.9500
C3—C41.516 (3)C8—C91.310 (5)
C4—H41.0000C9—H9A0.9500
C4—C51.518 (3)C9—H9B0.9500
C17—C181.391 (3)
C10—O3—C3117.72 (17)O1—C5—H5109.1
C14—O5—C6115.53 (17)O1—C5—C6108.86 (18)
C12—O4—C4117.20 (17)C4—C5—H5109.1
C1—O1—C5112.05 (16)C6—C5—C4113.65 (19)
C1—O2—C7114.16 (19)C6—C5—H5109.1
C19—N1—C16111.62 (17)O4—C12—C13110.9 (2)
C19—N1—C2125.71 (18)O7—C12—O4123.2 (2)
C16—N1—C2122.64 (18)O7—C12—C13125.9 (2)
O10—C19—N1125.1 (2)O5—C6—C5108.59 (18)
O10—C19—C18128.8 (2)O5—C6—H6A110.0
N1—C19—C18106.08 (19)O5—C6—H6B110.0
O9—C16—N1125.3 (2)C5—C6—H6A110.0
O9—C16—C17128.9 (2)C5—C6—H6B110.0
N1—C16—C17105.75 (18)H6A—C6—H6B108.4
N1—C2—H2107.3C20—C21—H21119.5
N1—C2—C1111.67 (18)C22—C21—H21119.5
N1—C2—C3111.70 (17)C22—C21—C20120.9 (2)
C1—C2—H2107.3C17—C20—C21117.5 (2)
C3—C2—H2107.3C17—C20—H20121.2
C3—C2—C1111.17 (18)C21—C20—H20121.2
O3—C10—C11110.26 (19)C23—C22—H22119.3
O8—C10—O3123.2 (2)C21—C22—C23121.4 (2)
O8—C10—C11126.5 (2)C21—C22—H22119.3
O1—C1—C2109.66 (17)C14—C15—H15A109.5
O1—C1—H1110.8C14—C15—H15B109.5
O2—C1—O1107.83 (17)C14—C15—H15C109.5
O2—C1—C2106.73 (18)H15A—C15—H15B109.5
O2—C1—H1110.8H15A—C15—H15C109.5
C2—C1—H1110.8H15B—C15—H15C109.5
O5—C14—C15111.83 (19)C12—C13—H13A109.5
O6—C14—O5122.5 (2)C12—C13—H13B109.5
O6—C14—C15125.7 (2)C12—C13—H13C109.5
O3—C3—C2107.53 (17)H13A—C13—H13B109.5
O3—C3—H3110.2H13A—C13—H13C109.5
O3—C3—C4108.74 (18)H13B—C13—H13C109.5
C2—C3—H3110.2C10—C11—H11A109.5
C4—C3—C2109.80 (17)C10—C11—H11B109.5
C4—C3—H3110.2C10—C11—H11C109.5
O4—C4—C3109.33 (17)H11A—C11—H11B109.5
O4—C4—H4109.8H11A—C11—H11C109.5
O4—C4—C5108.51 (17)H11B—C11—H11C109.5
C3—C4—H4109.8O2—C7—H7A109.9
C3—C4—C5109.68 (18)O2—C7—H7B109.9
C5—C4—H4109.8O2—C7—C8108.8 (3)
C18—C17—C16108.31 (19)H7A—C7—H7B108.3
C20—C17—C16130.3 (2)C8—C7—H7A109.9
C20—C17—C18121.4 (2)C8—C7—H7B109.9
C17—C18—C19108.20 (19)C7—C8—H8117.8
C23—C18—C19130.5 (2)C9—C8—C7124.5 (3)
C23—C18—C17121.3 (2)C9—C8—H8117.8
C18—C23—H23121.3C8—C9—H9A120.0
C18—C23—C22117.4 (2)C8—C9—H9B120.0
C22—C23—H23121.3H9A—C9—H9B120.0
O1—C5—C4106.90 (17)
O3—C3—C4—O468.6 (2)C2—C3—C4—O4173.96 (17)
O3—C3—C4—C5172.50 (16)C2—C3—C4—C555.1 (2)
O4—C4—C5—O1178.04 (16)C10—O3—C3—C2139.16 (18)
O4—C4—C5—C657.9 (2)C10—O3—C3—C4102.0 (2)
O1—C5—C6—O573.7 (2)C1—O1—C5—C467.7 (2)
O10—C19—C18—C17179.9 (2)C1—O1—C5—C6169.15 (18)
O10—C19—C18—C230.9 (4)C1—O2—C7—C8171.1 (2)
O9—C16—C17—C18177.5 (2)C1—C2—C3—O3168.13 (17)
O9—C16—C17—C202.1 (4)C1—C2—C3—C450.0 (2)
O2—C7—C8—C91.3 (4)C14—O5—C6—C5173.51 (18)
N1—C19—C18—C170.1 (2)C3—O3—C10—O89.0 (3)
N1—C19—C18—C23179.1 (2)C3—O3—C10—C11170.29 (18)
N1—C16—C17—C181.9 (2)C3—C2—C1—O152.8 (2)
N1—C16—C17—C20178.4 (2)C3—C2—C1—O2169.36 (17)
N1—C2—C1—O1178.30 (17)C3—C4—C5—O162.6 (2)
N1—C2—C1—O265.2 (2)C3—C4—C5—C6177.28 (18)
N1—C2—C3—O366.4 (2)C4—O4—C12—O73.4 (3)
N1—C2—C3—C4175.45 (18)C4—O4—C12—C13178.73 (19)
C19—N1—C16—O9177.5 (2)C4—C5—C6—O545.3 (3)
C19—N1—C16—C172.0 (2)C17—C18—C23—C221.0 (3)
C19—N1—C2—C166.5 (3)C18—C17—C20—C210.7 (3)
C19—N1—C2—C358.7 (3)C18—C23—C22—C211.4 (3)
C19—C18—C23—C22179.9 (2)C5—O1—C1—O2178.89 (17)
C16—N1—C19—O10178.6 (2)C5—O1—C1—C263.0 (2)
C16—N1—C19—C181.4 (2)C12—O4—C4—C3108.5 (2)
C16—N1—C2—C1111.3 (2)C12—O4—C4—C5131.9 (2)
C16—N1—C2—C3123.5 (2)C6—O5—C14—O69.1 (3)
C16—C17—C18—C191.1 (2)C6—O5—C14—C15170.7 (2)
C16—C17—C18—C23179.6 (2)C20—C17—C18—C19179.2 (2)
C16—C17—C20—C21178.9 (2)C20—C17—C18—C230.1 (3)
C2—N1—C19—O100.6 (3)C20—C21—C22—C230.8 (4)
C2—N1—C19—C18179.37 (19)C22—C21—C20—C170.3 (3)
C2—N1—C16—O90.6 (3)C7—O2—C1—O168.5 (2)
C2—N1—C16—C17179.90 (18)C7—O2—C1—C2173.74 (18)
 

Acknowledgements

The authors thank Villanova University for financial support of this work.

References

First citationBruker (2013). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2014). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHanessian, S. & Banoub, J. (1977a). Carbohydr. Res. 53, C13–C16.  Google Scholar
First citationHanessian, S. & Banoub, J. (1977b). Synthetic Methods for Carbohydrates, ACS Symposium Series; 39, edited by H. S. El Khadem, pp. 36–63. Washington, DC: American Chemical Society.  Google Scholar
First citationJohnson, D. A., Keegan, D. S., Sowell, C. G., Livesay, M. T., Johnson, C. L., Taubner, L. M., Harris, A., Myers, K. R., Thompson, J. D., Gustafson, G. L., Rhodes, M. J., Ulrich, J. T., Ward, J. R., Yorgensen, Y. M., Cantrell, J. L. & Brookshire, V. G. (1999). J. Med. Chem. 42, 4640–4649.  Google Scholar
First citationKerns, R. J. & Wei, P. (2012). Glycobiology and Drug Design, ACS Symposium Series; 1102, edited by A. A. Klyosov, pp. 235–236. Washington, DC: American Chemical Society.  Google Scholar
First citationKiso, M. & Anderson, L. (1985). Carbohydr. Res. 136, 309–323.  Google Scholar
First citationLemieux, R. U., Takeda, T. & Chung, B. Y. (1977). Synthetic Methods for Carbohydrates, ACS Symposium Series; 39, edited by H. S. El Khadem, pp. 90–115. Washington, DC: American Chemical Society.  Google Scholar
First citationLindhorst, T. K. (2003). Essentials of Carbohydrate Chemistry and Biochemistry, pp. 97–100 Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.  Google Scholar
First citationMiquel, N., Vignando, S., Russo, G. & Lay, L. (2004). Synlett, pp. 0341–0343.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPinto, B. M., Reimer, K. B. & Tixidre, A. (1991). Carbohydr. Res. 210, 199–219.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStick, R. V. & Williams, S. J. (2009). Carbohydrates: The Essential Molecules of Life, pp. 174–177. Oxford, UK; Amsterdam, The Netherlands: Elsevier.  Google Scholar
First citationStill, W. C., Kahn, M. & Mitra, A. (1978). J. Org. Chem. 43, 2923–2925.  CrossRef CAS Web of Science Google Scholar
First citationWessel, H.-P., Iversen, T. & Bundle, D. R. (1984). Carbohydr. Res. 130, 5–21.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds