organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4-Bromo-N-(4-fluoro­phen­yl)benzene­sulfonamide

aDepartment of PG Studies and Research in Chemistry, St Aloysius College, Mangalore, India, bDepartment of Chemistry, University College of Science, Tumkur University, Tumkur 572 103, India, cDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysuru-6, India, and dInstitution of Excellence, University of Mysore, Manasagangotri, Mysuru-6, India
*Correspondence e-mail: naveen@ioe.uni-mysore.ac.in

Edited by A. J. Lough, University of Toronto, Canada (Received 21 July 2016; accepted 4 August 2016; online 9 August 2016)

The title mol­ecule, C12H9BrFNO2S, is U-shaped with the central C—S—N—C fragment having a torsion angle of 68.4 (3)° and a dihedral angle between the planes of the two benzene rings of 41.17 (19)°. The crystal structure features strong N—H⋯O hydrogen bonds between the mol­ecules, forming infinite one-dimensional C(4) chains along [001]. These chains are inter­connected via short F⋯F contacts [F⋯F = 2.868 (4) Å], forming a one-dimensional ribbon-like architecture.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Sulfonamide drugs were the first among the chemotherapeutic agents to be used for the curing and prevention of bacterial infection in human beings (Shiva Prasad et al., 2011[Shiva Prasad, K., Shiva Kumara, L., Vinay, K. B., Chandra Shekar, S., Jayalakshmi, B. & Revanasiddappa, H. D. (2011). Int. J. Chem. Res. 2, 1-6.]). They play a vital role as a key constituent in a number of biologically active mol­ecules. To date, sulfonamides have been known to exhibit a wide variety of biological activities, such as anti­bacterial (Subhakara Reddy et al., 2012[Reddy, N. S., Rao, A. S., Chari, M. A., Kumar, V. R., Jyothy, V. & Himabindu, V. (2012). J. Chem. Sci. 124, 723-730.]), insecticidal (Himel et al., 1971[Himel, C. M., Aboul-Saad, W. G. & Uk, S. (1971). J. Agric. Food Chem. 19, 1175-1180.]), anti­fungal (Hanafy et al., 2007[Hanafy, A., Uno, J., Mitani, H., Kang, Y. & Mikami, Y. (2007). Nippon Ishinkin Gakkai Zasshi, 48, 47-50.]), anti­hepatitis (Zhao et al., 2010[Zhao, Y.-F., Feng, R.-L., Liu, Y.-J., Zhang, Y.-K. & Gong, P. (2010). Chem. Res. Chin. Univ. 26, 272-277.]), anti-inflammatory (Küçükgüzel et al., 2013[Küçükgüzel, S. G., Coskun, I., Aydın, S., Aktay, G., Gursoy, S., Cevik, O., Ozakpınar, O. B., Ozsavc, D., Sener, A., Kaushik-Basu, N., Basu, A. & Talele, T. T. (2013). Molecules, 18, 3595-3614.]), anti­tumour (Ghorab et al., 2011[Ghorab, M. M., Ragab, A. F., Heiba, I. H. & Agha, M. H. (2011). J. Basic Appl .Chem. 1(2), 8-14.]), anti­cancer (Al-Said et al., 2011[Al-Said, M. S., Ghorab, M. M., Al-Dosari, M. S. & Hamed, M. M. (2011). Eur. J. Med. Chem. 46, 201-207.]), anti-HIV (Sahu et al., 2007[Sahu, K. K., Ravichandran, V., Mourya, V. K. & Agrawal, R. K. (2007). Med. Chem. Res. 15, 418-430.]) and anti­tubercular activities (Vora & Mehta, 2012[Vora, P. J. & Mehta, A. G. (2012). IOSR J. Appl. Chem. 1, 34-39.]). In recent years, extensive research studies have been carried out on the synthesis and evaluation of the pharmacological activities of mol­ecules containing a sulfonamide moiety, and important pharmacophores have been reported (Mohan et al., 2013[Mohan, N. R., Sreenivasa, S., Manojkumar, K. E. & Chakrapani Rao, T. M. (2013). J. Appl. Chem. 2, 722-729.]). With this in mind and in our continued efforts for understanding the structures of N-(4-substituted phen­yl)-4-bromo­benzene­sulfonamides (Rodrigues et al., 2015[Rodrigues, V. Z., Snehala, Naveen, S., Lokanath, N. K. & Suchetan, P. A. (2015). Der Pharma Chem. 7, 299-307.], 2016[Rodrigues, V. Z., Naveen, S., Lokanath, N. K. & Suchetan, P. A. (2016). IUCrData, 1, x160631.]), we report herein the crystal structure of 4-bromo-N-(4-fluoro­phen­yl)benzene­sulfonamide, (I).

The mol­ecule of (I) (Fig. 1[link]) is U-shaped, with the central C4—S1—N1—C7 fragment having a torsion angle of 68.4 (3)°. The dihedral angle between the planes of the two benzene rings is 41.17 (19)°. In comparison, the dihedral angles between the planes of the two benzene rings in the reported structures of 4-bromo-N-(4-bromo­phen­yl)benzene­sul­fonamide, (II) (Rodrigues et al., 2015[Rodrigues, V. Z., Snehala, Naveen, S., Lokanath, N. K. & Suchetan, P. A. (2015). Der Pharma Chem. 7, 299-307.]), and 4-bromo-N-(4-nitro­phen­yl)benzene­sulfonamide, (III) (Rodrigues et al., 2016[Rodrigues, V. Z., Naveen, S., Lokanath, N. K. & Suchetan, P. A. (2016). IUCrData, 1, x160631.]), are slightly less than that in (I), with values of 38.5 (2)° in (II) and 32.6 (6)° in (III).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.

The crystal structure of (I) features strong N1—H1⋯O2i hydrogen bonds (Table 1[link] and Fig. 2[link]) between the mol­ecules, forming infinite one-dimensional C(4) chains along [001]. These chains are inter­connected via F⋯F(−x, −y, z + [{1\over 2}]) contacts [F⋯F = 2.868 (4) Å], forming a one-dimensional ribbon-like architecture (Fig. 2[link]). In contrast, in (II) and (III), three-dimensional supra­molecular architectures are present as a result of N—H⋯O(S) chains, structure-directing C—H⋯O inter­actions and other weak inter­actions of the types Br⋯Br [in (II)] and Br⋯Onitro [in (III)].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.90 (2) 2.03 (2) 2.911 (4) 167 (4)
Symmetry code: (i) x, y, z-1.
[Figure 2]
Figure 2
Crystal packing of the title compound, showing N—H⋯O hydrogen bonds as dotted lines. The F⋯F contacts between hydrogen-bonded chains are also shown as dotted lines.

Synthesis and crystallization

Compound (I) was prepared according to the literature method of Rodrigues et al. (2015[Rodrigues, V. Z., Snehala, Naveen, S., Lokanath, N. K. & Suchetan, P. A. (2015). Der Pharma Chem. 7, 299-307.]). The purity of the compound was checked by determining its melting point (m.p. 400 K). Prismatic single crystals of (I) used for X-ray diffraction study were obtained by slow evaporation of an ethano­lic solution of (I) at room temperature.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Two reflections with bad agreement between Fo and Fc, viz. 110 and 120, were omitted from the final refinement.

Table 2
Experimental details

Crystal data
Chemical formula C12H9BrFNO2S
Mr 330.17
Crystal system, space group Orthorhombic, Pna21
Temperature (K) 296
a, b, c (Å) 19.7608 (6), 12.4156 (4), 5.0776 (2)
V3) 1245.75 (7)
Z 4
Radiation type Cu Kα
μ (mm−1) 6.14
Crystal size (mm) 0.27 × 0.24 × 0.19
 
Data collection
Diffractometer Bruker APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.238, 0.311
No. of measured, independent and observed [I > 2σ(I)] reflections 5649, 1688, 1621
Rint 0.053
(sin θ/λ)max−1) 0.583
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.083, 1.03
No. of reflections 1688
No. of parameters 167
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.40, −0.36
Absolute structure Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 547 Friedel pairs
Absolute structure parameter 0.01 (3)
Computer programs: APEX2, SAINT-Plus and XPREP (Bruker, 2009[Bruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: APEX2 and SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus and XPREP (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

4-Bromo-N-(4-fluorophenyl)benzenesulfonamide top
Crystal data top
C12H9BrFNO2SPrism
Mr = 330.17Dx = 1.760 Mg m3
Orthorhombic, Pna21Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2c -2nCell parameters from 137 reflections
a = 19.7608 (6) Åθ = 5.7–64.1°
b = 12.4156 (4) ŵ = 6.14 mm1
c = 5.0776 (2) ÅT = 296 K
V = 1245.75 (7) Å3Prism, colourless
Z = 40.27 × 0.24 × 0.19 mm
F(000) = 656
Data collection top
Bruker APEXII
diffractometer
1621 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.053
Graphite monochromatorθmax = 64.1°, θmin = 5.7°
φ and ω scansh = 2222
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1412
Tmin = 0.238, Tmax = 0.311l = 55
5649 measured reflections1 standard reflections every 1 reflections
1688 independent reflections intensity decay: 0.1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0511P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
1688 reflectionsΔρmax = 0.40 e Å3
167 parametersΔρmin = 0.36 e Å3
2 restraintsAbsolute structure: Flack (1983), 547 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (3)
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.39127 (18)0.1909 (3)0.1353 (8)0.0265 (8)
C20.34960 (19)0.1649 (3)0.3425 (9)0.0296 (9)
H20.35490.09970.43020.036*
C30.2997 (2)0.2365 (3)0.4200 (8)0.0289 (9)
H30.27070.21960.55800.035*
C40.29376 (18)0.3337 (3)0.2885 (7)0.0217 (8)
C50.3370 (2)0.3607 (4)0.0829 (8)0.0300 (10)
H50.33280.42670.00220.036*
C60.38626 (18)0.2882 (3)0.0067 (10)0.0326 (9)
H60.41570.30490.13010.039*
C70.13069 (18)0.2839 (3)0.2275 (7)0.0227 (8)
C80.08360 (19)0.2754 (3)0.4302 (7)0.0266 (9)
H80.07390.33480.53510.032*
C90.05147 (18)0.1789 (3)0.4750 (9)0.0296 (10)
H90.02080.17170.61290.035*
C100.0654 (2)0.0936 (3)0.3131 (9)0.0272 (10)
C110.1114 (2)0.0990 (3)0.1087 (9)0.0290 (10)
H110.11950.03980.00090.035*
C120.14518 (19)0.1957 (3)0.0700 (8)0.0276 (9)
H120.17760.20140.06200.033*
N10.16334 (17)0.3861 (3)0.1795 (6)0.0221 (7)
O10.24522 (13)0.5284 (2)0.2820 (5)0.0270 (6)
O20.20711 (16)0.4034 (2)0.6338 (6)0.0283 (7)
F10.03373 (12)0.0025 (2)0.3541 (6)0.0388 (6)
S10.22670 (5)0.42265 (7)0.3659 (2)0.0217 (2)
Br10.457510 (19)0.09041 (3)0.01845 (10)0.03674 (18)
H10.170 (2)0.393 (3)0.005 (3)0.030 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0271 (18)0.022 (2)0.031 (2)0.0001 (16)0.0040 (15)0.0053 (19)
C20.035 (2)0.022 (2)0.032 (2)0.0024 (17)0.0043 (17)0.0052 (19)
C30.037 (2)0.025 (2)0.025 (2)0.0022 (17)0.0048 (15)0.0017 (17)
C40.0228 (17)0.023 (2)0.0193 (19)0.0017 (16)0.0004 (13)0.0006 (15)
C50.036 (2)0.023 (2)0.031 (2)0.0010 (17)0.0039 (16)0.0071 (17)
C60.0282 (18)0.037 (2)0.033 (2)0.0012 (16)0.0095 (18)0.001 (2)
C70.0263 (19)0.024 (2)0.0178 (19)0.0003 (16)0.0008 (14)0.0044 (16)
C80.0289 (19)0.027 (2)0.024 (2)0.0023 (17)0.0050 (14)0.0029 (16)
C90.0265 (17)0.033 (2)0.029 (3)0.0018 (16)0.0073 (17)0.002 (2)
C100.028 (2)0.023 (2)0.030 (3)0.0038 (15)0.0023 (18)0.0020 (16)
C110.036 (2)0.026 (2)0.024 (2)0.0017 (16)0.0017 (17)0.0043 (17)
C120.0324 (19)0.029 (2)0.021 (2)0.0022 (15)0.0053 (15)0.0033 (17)
N10.0306 (17)0.0239 (16)0.0119 (18)0.0016 (14)0.0008 (13)0.0029 (14)
O10.0390 (15)0.0165 (14)0.0254 (14)0.0004 (12)0.0021 (11)0.0033 (11)
O20.0375 (17)0.0278 (17)0.0195 (16)0.0011 (11)0.0030 (13)0.0002 (11)
F10.0447 (13)0.0287 (14)0.0430 (16)0.0109 (10)0.0002 (12)0.0024 (13)
S10.0288 (5)0.0207 (5)0.0156 (4)0.0003 (3)0.0014 (4)0.0003 (4)
Br10.0296 (3)0.0300 (3)0.0506 (3)0.00444 (15)0.0016 (2)0.0070 (3)
Geometric parameters (Å, º) top
C1—C21.374 (6)C7—N11.445 (5)
C1—C61.377 (6)C8—C91.375 (6)
C1—Br11.903 (4)C8—H80.9300
C2—C31.385 (6)C9—C101.369 (6)
C2—H20.9300C9—H90.9300
C3—C41.384 (6)C10—F11.363 (5)
C3—H30.9300C10—C111.382 (7)
C4—C51.390 (5)C11—C121.388 (6)
C4—S11.769 (4)C11—H110.9300
C5—C61.382 (6)C12—H120.9300
C5—H50.9300N1—S11.634 (3)
C6—H60.9300N1—H10.900 (10)
C7—C121.386 (5)O1—S11.428 (3)
C7—C81.392 (5)O2—S11.434 (3)
C2—C1—C6121.7 (4)C7—C8—H8120.1
C2—C1—Br1119.8 (3)C10—C9—C8118.8 (4)
C6—C1—Br1118.5 (3)C10—C9—H9120.6
C1—C2—C3119.6 (4)C8—C9—H9120.6
C1—C2—H2120.2F1—C10—C9119.6 (4)
C3—C2—H2120.2F1—C10—C11117.3 (4)
C4—C3—C2118.9 (4)C9—C10—C11123.1 (4)
C4—C3—H3120.6C10—C11—C12117.7 (4)
C2—C3—H3120.6C10—C11—H11121.1
C3—C4—C5121.4 (4)C12—C11—H11121.1
C3—C4—S1120.0 (3)C7—C12—C11120.2 (4)
C5—C4—S1118.4 (3)C7—C12—H12119.9
C6—C5—C4119.1 (4)C11—C12—H12119.9
C6—C5—H5120.5C7—N1—S1119.2 (2)
C4—C5—H5120.5C7—N1—H1108 (3)
C1—C6—C5119.3 (4)S1—N1—H1116 (3)
C1—C6—H6120.3O1—S1—O2120.34 (16)
C5—C6—H6120.3O1—S1—N1106.20 (17)
C12—C7—C8120.3 (4)O2—S1—N1107.23 (17)
C12—C7—N1120.3 (3)O1—S1—C4108.41 (17)
C8—C7—N1119.4 (4)O2—S1—C4107.98 (18)
C9—C8—C7119.8 (4)N1—S1—C4105.81 (17)
C9—C8—H8120.1
C6—C1—C2—C32.1 (6)C9—C10—C11—C120.6 (7)
Br1—C1—C2—C3177.4 (3)C8—C7—C12—C111.8 (6)
C1—C2—C3—C41.0 (6)N1—C7—C12—C11177.0 (4)
C2—C3—C4—C50.4 (6)C10—C11—C12—C72.1 (6)
C2—C3—C4—S1175.3 (3)C12—C7—N1—S1101.4 (4)
C3—C4—C5—C60.8 (6)C8—C7—N1—S179.8 (4)
S1—C4—C5—C6174.9 (3)C7—N1—S1—O1176.5 (3)
C2—C1—C6—C51.7 (6)C7—N1—S1—O246.7 (3)
Br1—C1—C6—C5177.8 (3)C7—N1—S1—C468.4 (3)
C4—C5—C6—C10.2 (6)C3—C4—S1—O1158.8 (3)
C12—C7—C8—C90.2 (6)C5—C4—S1—O125.4 (4)
N1—C7—C8—C9179.0 (4)C3—C4—S1—O226.9 (4)
C7—C8—C9—C101.8 (6)C5—C4—S1—O2157.3 (3)
C8—C9—C10—F1179.7 (4)C3—C4—S1—N187.7 (3)
C8—C9—C10—C111.4 (7)C5—C4—S1—N188.2 (3)
F1—C10—C11—C12178.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.90 (2)2.03 (2)2.911 (4)167 (4)
Symmetry code: (i) x, y, z1.
 

Acknowledgements

The authors are thankful to the Institution of Excellence, Vijnana Bhavana, University of Mysore, Mysore, for providing the single-crystal X-ray diffraction data. VZR is thankful to the University Grants Commission, Delhi, for financial assistance under its MRP scheme.

References

First citationAl-Said, M. S., Ghorab, M. M., Al-Dosari, M. S. & Hamed, M. M. (2011). Eur. J. Med. Chem. 46, 201–207.  Web of Science CAS PubMed Google Scholar
First citationBruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGhorab, M. M., Ragab, A. F., Heiba, I. H. & Agha, M. H. (2011). J. Basic Appl .Chem. 1(2), 8–14.  Google Scholar
First citationHanafy, A., Uno, J., Mitani, H., Kang, Y. & Mikami, Y. (2007). Nippon Ishinkin Gakkai Zasshi, 48, 47–50.  CrossRef CAS Google Scholar
First citationHimel, C. M., Aboul-Saad, W. G. & Uk, S. (1971). J. Agric. Food Chem. 19, 1175–1180.  CrossRef Web of Science Google Scholar
First citationKüçükgüzel, S. G., Coskun, I., Aydın, S., Aktay, G., Gursoy, S., Cevik, O., Ozakpınar, O. B., Ozsavc, D., Sener, A., Kaushik-Basu, N., Basu, A. & Talele, T. T. (2013). Molecules, 18, 3595–3614.  PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMohan, N. R., Sreenivasa, S., Manojkumar, K. E. & Chakrapani Rao, T. M. (2013). J. Appl. Chem. 2, 722–729.  Google Scholar
First citationReddy, N. S., Rao, A. S., Chari, M. A., Kumar, V. R., Jyothy, V. & Himabindu, V. (2012). J. Chem. Sci. 124, 723–730.  CrossRef CAS Google Scholar
First citationRodrigues, V. Z., Naveen, S., Lokanath, N. K. & Suchetan, P. A. (2016). IUCrData, 1, x160631.  Google Scholar
First citationRodrigues, V. Z., Snehala, Naveen, S., Lokanath, N. K. & Suchetan, P. A. (2015). Der Pharma Chem. 7, 299–307.  CAS Google Scholar
First citationSahu, K. K., Ravichandran, V., Mourya, V. K. & Agrawal, R. K. (2007). Med. Chem. Res. 15, 418–430.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShiva Prasad, K., Shiva Kumara, L., Vinay, K. B., Chandra Shekar, S., Jayalakshmi, B. & Revanasiddappa, H. D. (2011). Int. J. Chem. Res. 2, 1–6.  Google Scholar
First citationVora, P. J. & Mehta, A. G. (2012). IOSR J. Appl. Chem. 1, 34–39.  CrossRef Google Scholar
First citationZhao, Y.-F., Feng, R.-L., Liu, Y.-J., Zhang, Y.-K. & Gong, P. (2010). Chem. Res. Chin. Univ. 26, 272–277.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds