organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4-[5-(Benzo­furan-2-yl)-1-phenyl-1H-pyrazol-3-yl]-N,N-di­methyl­aniline

aDepartment of Studies in Chemistry, Manasagangotri, University of Mysore, Mysore 570 006, India, and bDepartment of Studies in Physics, Manasagangotri, University of Mysore, Mysore 570 006, India
*Correspondence e-mail: mpsadashiva@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 19 August 2016; accepted 24 August 2016; online 31 August 2016)

In the title compound, C25H21N3O, the dihedral angles between the pyrazole ring and its phenyl, aniline and benzo­furan (r.m.s. deviation = 0.006 Å) substituents are 47.64 (8), 4.00 (8) and 29.12 (7)°, respectively. The methyl C atoms of the aniline group deviate from their attached ring by 0.521 (3) and 0.010 (3) Å. In the crystal, aromatic ππ stacking between the pyrazole rings [centroid–centroid separation = 3.7899 (9) Å and slippage = 0.66 Å] generates inversion dimers.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Benzo­furan derivatives are found in many natural bioactive compounds (Khanam & Shamsuzzaman, 2015[Khanam, H. & Shamsuzzaman (2015). Eur. J. Med. Chem. 97, 483-504.]). In this paper, we report the synthesis and crystal structure of the title benzo­furan-pyrazole hybrid.

In the mol­ecular structure of the title compound (Fig. 1[link]), the pyrazole ring makes dihedral angles of 29.12 (7) and 47.64 (8)° withe the phenyl ring (C20–C25) and the mean plane of the benzo­furan ring system (O1/C12–C19), respectively. The pyrazole ring is almost coplanar with the benzene ring (C4–C9), as indicated by the dihedral angle of 4.00 (8)°. The methyl C atoms of the aniline group deviate from their attached ring by 0.521 (3) and 0.010 (3) Å. In the crystal, aromatic ππ stacking between the pyrazole rings [centroid–centroid separation = 3.7899 (9); slippage = 0.66 Å) generates inversion dimers.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.

Synthesis and crystallization

A solution of 1-(benzo­furan-2-yl)-3-(4-(di­methyl­amino)­phen­yl)-3-thioxopropan-1-one (0.81 g, 2.5 mmol, 1.0 eq.) and phenyl­hydrazine (0.40 g, 3.75 mmol, 1.5 eq.) in ethanol (10 ml) was refluxed for 3 h. The course of the reaction was monitored by thin-layer chromatography (TLC). After completion, the solvent was removed under reduced pressure, then the residue was extracted with ethyl acetate. The combined ethyl acetate layers were dried over anhydrous magnesium sulfate, filtered and the solvent removed under reduced pressure to afford the crude product which was purified by column chromatography using silica gel of mesh size 60–120 using an eluent mixture of ethyl acetate and hexane (ratio 2:8). Finally, the title compound was crystallized as colourless blocks from a solvent mixture of ethyl acetate/hexane (yield 77%, m.p. 178–180 K).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula C25H21N3O
Mr 379.45
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 9.6600 (8), 14.9306 (13), 14.5976 (13)
β (°) 107.832 (3)
V3) 2004.3 (3)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.62
Crystal size (mm) 0.27 × 0.26 × 0.22
 
Data collection
Diffractometer Bruker X8 Proteum
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.851, 0.877
No. of measured, independent and observed [I > 2σ(I)] reflections 17500, 3298, 3063
Rint 0.042
(sin θ/λ)max−1) 0.586
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.135, 1.06
No. of reflections 3298
No. of parameters 265
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.23, −0.19
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

4-[5-(Benzofuran-2-yl)-1-phenyl-1H-pyrazol-3-yl]-N,N-dimethylaniline top
Crystal data top
C25H21N3OF(000) = 800
Mr = 379.45Dx = 1.258 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 3298 reflections
a = 9.6600 (8) Åθ = 6.4–64.6°
b = 14.9306 (13) ŵ = 0.62 mm1
c = 14.5976 (13) ÅT = 296 K
β = 107.832 (3)°Block, colourless
V = 2004.3 (3) Å30.27 × 0.26 × 0.22 mm
Z = 4
Data collection top
Bruker X8 Proteum
diffractometer
3298 independent reflections
Radiation source: Bruker MicroStar microfocus rotating anode3063 reflections with I > 2σ(I)
Helios multilayer optics monochromatorRint = 0.042
Detector resolution: 10.7 pixels mm-1θmax = 64.6°, θmin = 6.4°
φ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1717
Tmin = 0.851, Tmax = 0.877l = 1517
17500 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.135 w = 1/[σ2(Fo2) + (0.0787P)2 + 0.3177P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3298 reflectionsΔρmax = 0.23 e Å3
265 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0131 (13)
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.30155 (11)0.72252 (7)0.33607 (8)0.0575 (4)
N10.64307 (13)0.61185 (8)0.45780 (9)0.0490 (4)
N20.69905 (13)0.59191 (8)0.55309 (9)0.0505 (4)
N30.68633 (17)0.56415 (13)0.99273 (11)0.0744 (6)
C10.50112 (15)0.63863 (9)0.43519 (11)0.0488 (4)
C20.46516 (16)0.63547 (10)0.51835 (12)0.0527 (5)
C30.59079 (16)0.60660 (9)0.59031 (11)0.0485 (4)
C40.61425 (16)0.59408 (9)0.69352 (11)0.0491 (5)
C50.74975 (17)0.57019 (11)0.75589 (12)0.0571 (5)
C60.77438 (18)0.56078 (12)0.85328 (12)0.0613 (5)
C70.66317 (19)0.57498 (11)0.89460 (12)0.0573 (5)
C80.52667 (19)0.59812 (11)0.83193 (12)0.0588 (5)
C90.50328 (17)0.60728 (10)0.73467 (12)0.0545 (5)
C100.5955 (3)0.6120 (2)1.03840 (17)0.1018 (11)
C110.8309 (2)0.54142 (18)1.05430 (14)0.0906 (8)
C120.41158 (15)0.66189 (10)0.33844 (11)0.0504 (4)
C130.22834 (16)0.73479 (10)0.24000 (12)0.0570 (5)
C140.11052 (19)0.79098 (13)0.20348 (17)0.0768 (7)
C150.0528 (2)0.79331 (16)0.10493 (19)0.0887 (8)
C160.1111 (2)0.74309 (17)0.04622 (17)0.0891 (8)
C170.2296 (2)0.68770 (14)0.08376 (14)0.0748 (7)
C180.28960 (16)0.68347 (11)0.18382 (12)0.0560 (5)
C190.40827 (17)0.63671 (11)0.25015 (12)0.0564 (5)
C200.74029 (15)0.61106 (10)0.40139 (10)0.0472 (4)
C210.74874 (17)0.68401 (11)0.34471 (12)0.0575 (5)
C220.84898 (19)0.68341 (12)0.29489 (13)0.0648 (6)
C230.94310 (19)0.61256 (13)0.30358 (12)0.0645 (6)
C240.93492 (18)0.54034 (12)0.36047 (12)0.0635 (6)
C250.83201 (17)0.53859 (11)0.40866 (11)0.0554 (5)
H20.375600.649600.526000.0630*
H50.826100.560300.730800.0690*
H60.866500.544700.892400.0740*
H80.449900.607500.856700.0710*
H90.411000.622700.695300.0650*
H10A0.610000.675201.034000.1530*
H10B0.620700.594801.104900.1530*
H10C0.495300.597601.006800.1530*
H11A0.867300.491301.027400.1360*
H11B0.826600.526101.117200.1360*
H11C0.894400.591801.059000.1360*
H140.072500.825200.243300.0920*
H150.027400.829600.077100.1060*
H160.069500.746600.020200.1070*
H170.268200.654300.043700.0900*
H190.471000.596500.234500.0680*
H210.687400.732900.340300.0690*
H220.853000.731300.255100.0780*
H231.012200.613400.271100.0770*
H240.998900.492600.366500.0760*
H250.824600.489100.445600.0660*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0438 (6)0.0580 (6)0.0693 (7)0.0088 (4)0.0151 (5)0.0108 (5)
N10.0407 (6)0.0544 (7)0.0485 (7)0.0045 (5)0.0087 (5)0.0034 (5)
N20.0442 (6)0.0556 (7)0.0496 (7)0.0042 (5)0.0111 (5)0.0028 (5)
N30.0762 (10)0.0937 (11)0.0555 (8)0.0022 (8)0.0236 (7)0.0031 (7)
C10.0406 (7)0.0445 (7)0.0579 (9)0.0018 (6)0.0099 (6)0.0030 (6)
C20.0426 (8)0.0514 (8)0.0638 (9)0.0037 (6)0.0159 (7)0.0027 (7)
C30.0460 (8)0.0427 (7)0.0563 (8)0.0008 (6)0.0149 (7)0.0007 (6)
C40.0477 (8)0.0423 (7)0.0581 (9)0.0010 (6)0.0172 (7)0.0001 (6)
C50.0470 (8)0.0673 (10)0.0592 (9)0.0034 (7)0.0195 (7)0.0000 (7)
C60.0492 (8)0.0735 (10)0.0582 (9)0.0029 (8)0.0121 (7)0.0024 (8)
C70.0625 (9)0.0558 (9)0.0567 (9)0.0027 (7)0.0227 (8)0.0034 (7)
C80.0571 (9)0.0588 (9)0.0678 (10)0.0050 (7)0.0301 (8)0.0008 (7)
C90.0491 (8)0.0510 (8)0.0640 (10)0.0061 (6)0.0184 (7)0.0020 (7)
C100.123 (2)0.121 (2)0.0741 (14)0.0178 (16)0.0490 (14)0.0075 (13)
C110.0872 (14)0.1205 (18)0.0563 (11)0.0023 (13)0.0105 (10)0.0008 (11)
C120.0383 (7)0.0450 (7)0.0632 (9)0.0029 (6)0.0085 (6)0.0068 (6)
C130.0387 (7)0.0545 (9)0.0725 (10)0.0014 (6)0.0094 (7)0.0188 (7)
C140.0480 (9)0.0678 (11)0.1079 (16)0.0106 (8)0.0142 (9)0.0262 (10)
C150.0556 (11)0.0802 (13)0.1105 (17)0.0051 (10)0.0038 (11)0.0389 (13)
C160.0684 (12)0.0938 (15)0.0817 (13)0.0118 (11)0.0118 (11)0.0356 (12)
C170.0642 (11)0.0815 (12)0.0674 (11)0.0074 (9)0.0035 (9)0.0099 (9)
C180.0425 (8)0.0537 (8)0.0641 (9)0.0065 (6)0.0049 (7)0.0109 (7)
C190.0465 (8)0.0540 (9)0.0621 (9)0.0066 (6)0.0069 (7)0.0020 (7)
C200.0397 (7)0.0532 (8)0.0443 (7)0.0005 (6)0.0064 (6)0.0022 (6)
C210.0513 (8)0.0533 (8)0.0643 (9)0.0009 (7)0.0126 (7)0.0042 (7)
C220.0639 (10)0.0680 (10)0.0631 (10)0.0070 (8)0.0204 (8)0.0071 (8)
C230.0596 (10)0.0790 (11)0.0587 (10)0.0065 (8)0.0238 (8)0.0087 (8)
C240.0587 (9)0.0687 (10)0.0641 (10)0.0099 (8)0.0205 (8)0.0068 (8)
C250.0546 (8)0.0551 (9)0.0543 (8)0.0051 (7)0.0134 (7)0.0014 (7)
Geometric parameters (Å, º) top
O1—C121.3885 (19)C20—C211.385 (2)
O1—C131.376 (2)C20—C251.382 (2)
N1—N21.3621 (18)C21—C221.378 (3)
N1—C11.368 (2)C22—C231.375 (3)
N1—C201.426 (2)C23—C241.378 (3)
N2—C31.336 (2)C24—C251.383 (2)
N3—C71.390 (2)C2—H20.9300
N3—C101.443 (3)C5—H50.9300
N3—C111.451 (3)C6—H60.9300
C1—C21.362 (2)C8—H80.9300
C1—C121.454 (2)C9—H90.9300
C2—C31.408 (2)C10—H10A0.9600
C3—C41.465 (2)C10—H10B0.9600
C4—C51.393 (2)C10—H10C0.9600
C4—C91.394 (2)C11—H11A0.9600
C5—C61.375 (2)C11—H11B0.9600
C6—C71.400 (3)C11—H11C0.9600
C7—C81.399 (3)C14—H140.9300
C8—C91.374 (2)C15—H150.9300
C12—C191.334 (2)C16—H160.9300
C13—C141.383 (3)C17—H170.9300
C13—C181.381 (2)C19—H190.9300
C14—C151.375 (4)C21—H210.9300
C15—C161.382 (3)C22—H220.9300
C16—C171.382 (3)C23—H230.9300
C17—C181.398 (3)C24—H240.9300
C18—C191.435 (2)C25—H250.9300
C12—O1—C13105.24 (12)C23—C24—C25120.28 (17)
N2—N1—C1111.43 (12)C20—C25—C24119.35 (15)
N2—N1—C20117.53 (12)C1—C2—H2127.00
C1—N1—C20130.67 (13)C3—C2—H2127.00
N1—N2—C3105.31 (12)C4—C5—H5119.00
C7—N3—C10119.32 (17)C6—C5—H5119.00
C7—N3—C11119.10 (16)C5—C6—H6119.00
C10—N3—C11115.83 (17)C7—C6—H6119.00
N1—C1—C2106.57 (13)C7—C8—H8119.00
N1—C1—C12123.93 (14)C9—C8—H8119.00
C2—C1—C12129.47 (14)C4—C9—H9119.00
C1—C2—C3106.19 (14)C8—C9—H9119.00
N2—C3—C2110.50 (14)N3—C10—H10A110.00
N2—C3—C4120.22 (14)N3—C10—H10B109.00
C2—C3—C4129.27 (15)N3—C10—H10C109.00
C3—C4—C5121.56 (15)H10A—C10—H10B109.00
C3—C4—C9121.86 (14)H10A—C10—H10C110.00
C5—C4—C9116.57 (14)H10B—C10—H10C109.00
C4—C5—C6122.18 (16)N3—C11—H11A109.00
C5—C6—C7121.16 (16)N3—C11—H11B109.00
N3—C7—C6121.59 (16)N3—C11—H11C110.00
N3—C7—C8121.66 (17)H11A—C11—H11B110.00
C6—C7—C8116.73 (15)H11A—C11—H11C110.00
C7—C8—C9121.61 (17)H11B—C11—H11C109.00
C4—C9—C8121.75 (16)C13—C14—H14122.00
O1—C12—C1113.76 (13)C15—C14—H14122.00
O1—C12—C19111.60 (14)C14—C15—H15119.00
C1—C12—C19134.62 (15)C16—C15—H15119.00
O1—C13—C14125.40 (16)C15—C16—H16119.00
O1—C13—C18110.58 (14)C17—C16—H16119.00
C14—C13—C18124.02 (17)C16—C17—H17121.00
C13—C14—C15116.17 (19)C18—C17—H17121.00
C14—C15—C16121.6 (2)C12—C19—H19127.00
C15—C16—C17121.6 (2)C18—C19—H19126.00
C16—C17—C18117.99 (19)C20—C21—H21120.00
C13—C18—C17118.65 (16)C22—C21—H21120.00
C13—C18—C19105.56 (14)C21—C22—H22120.00
C17—C18—C19135.79 (16)C23—C22—H22120.00
C12—C19—C18107.02 (15)C22—C23—H23120.00
N1—C20—C21120.53 (14)C24—C23—H23120.00
N1—C20—C25118.83 (13)C23—C24—H24120.00
C21—C20—C25120.52 (14)C25—C24—H24120.00
C20—C21—C22119.32 (15)C20—C25—H25120.00
C21—C22—C23120.53 (17)C24—C25—H25120.00
C22—C23—C24119.95 (17)
C13—O1—C12—C1178.98 (12)C9—C4—C5—C60.6 (2)
C13—O1—C12—C190.42 (17)C3—C4—C9—C8178.01 (14)
C12—O1—C13—C14179.22 (16)C5—C4—C9—C80.7 (2)
C12—O1—C13—C180.24 (17)C4—C5—C6—C70.0 (3)
C1—N1—N2—C30.12 (15)C5—C6—C7—N3178.89 (17)
C20—N1—N2—C3173.62 (12)C5—C6—C7—C80.6 (3)
N2—N1—C1—C20.18 (16)N3—C7—C8—C9178.84 (16)
N2—N1—C1—C12178.26 (13)C6—C7—C8—C90.6 (2)
C20—N1—C1—C2172.85 (14)C7—C8—C9—C40.1 (2)
C20—N1—C1—C129.1 (2)O1—C12—C19—C180.42 (18)
N2—N1—C20—C21127.92 (15)C1—C12—C19—C18178.58 (17)
N2—N1—C20—C2548.26 (19)O1—C13—C14—C15179.84 (17)
C1—N1—C20—C2144.4 (2)C18—C13—C14—C150.8 (3)
C1—N1—C20—C25139.44 (16)O1—C13—C18—C17179.69 (15)
N1—N2—C3—C20.36 (15)O1—C13—C18—C190.0 (2)
N1—N2—C3—C4178.30 (12)C14—C13—C18—C170.2 (3)
C10—N3—C7—C6154.9 (2)C14—C13—C18—C19179.47 (16)
C10—N3—C7—C826.9 (3)C13—C14—C15—C160.9 (3)
C11—N3—C7—C62.8 (3)C14—C15—C16—C170.4 (4)
C11—N3—C7—C8179.09 (19)C15—C16—C17—C180.2 (3)
N1—C1—C2—C30.39 (16)C16—C17—C18—C130.3 (3)
C12—C1—C2—C3178.32 (14)C16—C17—C18—C19179.8 (2)
N1—C1—C12—O1152.67 (13)C13—C18—C19—C120.25 (18)
N1—C1—C12—C1929.2 (3)C17—C18—C19—C12179.4 (2)
C2—C1—C12—O129.7 (2)N1—C20—C21—C22176.61 (15)
C2—C1—C12—C19148.41 (19)C25—C20—C21—C220.5 (2)
C1—C2—C3—N20.48 (17)N1—C20—C25—C24174.72 (14)
C1—C2—C3—C4178.03 (14)C21—C20—C25—C241.5 (2)
N2—C3—C4—C52.5 (2)C20—C21—C22—C232.1 (3)
N2—C3—C4—C9178.89 (13)C21—C22—C23—C241.8 (3)
C2—C3—C4—C5175.87 (15)C22—C23—C24—C250.3 (3)
C2—C3—C4—C92.7 (2)C23—C24—C25—C201.8 (2)
C3—C4—C5—C6178.05 (15)
 

Acknowledgements

GSL and MPS are thankful to the UGC for financial support (grant F. No. 37–456/2009 [SR]), UGC–SAP Phase-III, New Delhi and IOE, University of Mysore, Karnataka, for analyses.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKhanam, H. & Shamsuzzaman (2015). Eur. J. Med. Chem. 97, 483–504.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds