organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1,2,3,5-Tetra­methyl-1H-pyrazol-2-ium triiodide

aUniversity of Innsbruck, Faculty of Chemistry and Pharmacy, Innrain 80, 6020 Innsbruck, Austria
*Correspondence e-mail: gerhard.laus@uibk.ac.at

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 18 August 2016; accepted 18 August 2016; online 26 August 2016)

The title salt, C7H13N2+·I3, was obtained unintentionally by methyl­ation of 3,6-bis­(3,5-di­methyl­pyrazol-1-yl)-1,2,4,5-tetra­zine and subsequent fragmentation. The pyrazolium ring is almost planar (r.m.s. deviation = 0.003 Å) and the triiodide anion deviates slightly from linearity [I—I—I = 177.099 (12)°]. No directional inter­actions occur in the crystal.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Quaternary pyrazolium salts have been prepared by alkyl­ation of pyrazoles (Elguero et al., 1969[Elguero, J., Jacquier, R. & Tizane, D. (1969). Bull. Soc. Chim. Fr. 1687-1698.]) and a one-pot synthesis of the related 1,2,3,5-tetra­methyl­pyrazolium chloride has been reported (Hobbs & Wilson, 1972[Hobbs, C. F. & Wilson, J. D. (1972). US Patent US 3655690.]). Pyrazolium salts are well known plant-growth regulators (Jäger & Lürssen, 1976[Jäger, G. & Lürssen, K. (1976). German Patent DE 2523144.]) and herbicides (Jäger & Eue, 1976[Jäger, G. & Eue, L. (1976). German Patent DE 2523143.]).

The mol­ecular structure of the ion pair of the title compound is shown in Fig. 1[link]. The pyrazolium ring is almost perfectly planar (r.m.s. deviation = 0.003 Å). The triiodide ion deviates significantly from linearity with an I1—I2—I3 angle of 177.099 (12)°, which is close to the mean value for triiodide ions taken from the Cambridge Structure Database (Version 5.37; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) of 178°. There are no directional classic hydrogen bonds in this structure, although Hirshfeld surface calculation (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) revealed a large percentage of H⋯I inter­actions (39.5% of the total surface) with distances to the extent of the sum of van der Waals radii. The crystal packing is shown in Fig. 2[link].

[Figure 1]
Figure 1
The mol­ecular structure of the ion pair of the title compound, showing the atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2]
Figure 2
Crystal packing of the title compound.

A few related structures (Han & Huynh, 2007[Han, Y. & Huynh, H. V. (2007). Chem. Commun. pp. 1089.]; Han et al., 2007[Han, Y., Huynh, H. V. & Tan, G. K. (2007). Organometallics, 26, 6581-6585.], 2010[Han, Y., Lee, L. J. & Huynh, H. V. (2010). Chem. Eur. J. 16, 771-773.], 2011[Han, Y., Yuan, D., Teng, Q. & Huynh, H. V. (2011). Organometallics, 30, 1224-1230.]) of pyrazolium salts and derived N-heterocyclic carbene (NHC) complexes have been reported.

Synthesis and crystallization

A solution of 3,6-bis­(3,5-di­methyl­pyrazol-1-yl)-1,2,4,5-tetra­zine (0.5 g, 1.85 mmol; Coburn et al., 1991[Coburn, M. D., Buntain, G. A., Harris, B. W., Hiskey, M. A., Lee, K.-Y. & Ott, D. G. (1991). J. Heterocycl. Chem. 28, 2049-2050.]) and CH3I (0.46 ml, 7.4 mmol) in CHCl3 (4 ml) was heated at 368 K for five days in a sealed tube. Red crystals (0.89 g, 95%) precipitated which were washed with CHCl3 and dried, m.p. 442 K. The PXRD (Mo Kα radiation) of the bulk material was identical to the one calculated from the single-crystal diffraction data (Fig. 3[link]), indicating phase purity. 1H NMR (300 MHz, DMSO-d6): δ 2.40 (s, 6H), 3.89 (s, 6H), 6.53 (s, 1H) p.p.m. 13C NMR (75 MHz, DMSO-d6): δ 11.3, 33.5, 106.9, 145.1 p.p.m. IR (neat): ν 3287, 3084, 2991, 2930, 1680, 1609, 1577, 1480, 1420, 1274, 1161, 1077, 1046, 1023, 968, 941, 842, 816, 756, 719, 659, 646, 621, 588, 554, 516, 470, 420 cm−1.

[Figure 3]
Figure 3
Pawley fit (Rwp = 6.62%, Rexp  = 6.43%, Rp = 5.23%, gof = 1.03) of the PXRD data with a model calculated from the structural data of the single-crystal structure determination. Black dots indicate raw data, while the red line indicates the calculated model. The difference curve is shown in blue.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula C7H13N2+·I3
Mr 505.89
Crystal system, space group Monoclinic, P21/n
Temperature (K) 193
a, b, c (Å) 9.6719 (7), 13.4005 (9), 11.1874 (8)
β (°) 112.994 (2)
V3) 1334.77 (16)
Z 4
Radiation type Mo Kα
μ (mm−1) 6.99
Crystal size (mm) 0.16 × 0.13 × 0.08
 
Data collection
Diffractometer Bruker D8 QUEST PHOTON 100
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.397, 0.562
No. of measured, independent and observed [I > 2σ(I)] reflections 22167, 2648, 2400
Rint 0.028
(sin θ/λ)max−1) 0.619
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.062, 1.24
No. of reflections 2648
No. of parameters 113
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.40, −1.21
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXTL-XT2014/4 and SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXTL-XT2014/4 (Sheldrick, 2015); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: Mercury (Macrae et al., 2006).

1,2,3,5-Tetramethyl-1H-pyrazol-2-ium triiodide top
Crystal data top
C7H13N2+·I3Dx = 2.517 Mg m3
Mr = 505.89Melting point: 442 K
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.6719 (7) ÅCell parameters from 9875 reflections
b = 13.4005 (9) Åθ = 2.4–26.0°
c = 11.1874 (8) ŵ = 6.99 mm1
β = 112.994 (2)°T = 193 K
V = 1334.77 (16) Å3Prism, red
Z = 40.16 × 0.13 × 0.08 mm
F(000) = 912
Data collection top
Bruker D8 QUEST PHOTON 100
diffractometer
2648 independent reflections
Radiation source: Incoatec Microfocus2400 reflections with I > 2σ(I)
Multi layered optics monochromatorRint = 0.028
Detector resolution: 10.4 pixels mm-1θmax = 26.1°, θmin = 2.4°
φ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
k = 1616
Tmin = 0.397, Tmax = 0.562l = 1313
22167 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.062 w = 1/[σ2(Fo2) + (0.0207P)2 + 3.0909P]
where P = (Fo2 + 2Fc2)/3
S = 1.24(Δ/σ)max = 0.001
2648 reflectionsΔρmax = 0.40 e Å3
113 parametersΔρmin = 1.21 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.53163 (4)0.57210 (2)0.18064 (3)0.04747 (10)
I20.31387 (3)0.58881 (2)0.29850 (2)0.02818 (8)
I30.09003 (3)0.59495 (2)0.41519 (3)0.04406 (10)
C10.6156 (5)0.8272 (3)0.4063 (4)0.0339 (9)
C20.4931 (5)0.8817 (3)0.4027 (4)0.0368 (9)
H20.45120.93790.34900.044*
C30.4422 (4)0.8404 (3)0.4907 (4)0.0337 (9)
C40.7113 (6)0.8394 (4)0.3308 (5)0.0484 (11)
H4A0.81440.85490.39010.073*
H4B0.67190.89390.26830.073*
H4C0.71070.77740.28420.073*
C50.3137 (5)0.8684 (4)0.5255 (5)0.0458 (11)
H5A0.24090.81360.50300.069*
H5B0.26520.92850.47740.069*
H5C0.35030.88160.61900.069*
C60.7544 (5)0.6788 (3)0.5368 (4)0.0408 (10)
H6A0.81320.68180.48270.061*
H6B0.70760.61280.52820.061*
H6C0.82070.69030.62780.061*
C70.5258 (5)0.6932 (3)0.6445 (4)0.0361 (9)
H7A0.44290.71200.66960.054*
H7B0.62060.69540.72100.054*
H7C0.50920.62550.60860.054*
N10.6383 (4)0.7550 (2)0.4950 (3)0.0294 (7)
N20.5329 (4)0.7627 (2)0.5471 (3)0.0295 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.04624 (18)0.05257 (19)0.0537 (2)0.00103 (13)0.03051 (15)0.00763 (14)
I20.03148 (14)0.02296 (13)0.02863 (14)0.00115 (9)0.01014 (11)0.00118 (9)
I30.04725 (18)0.04483 (18)0.05066 (19)0.00210 (12)0.03060 (15)0.00475 (13)
C10.043 (2)0.0233 (18)0.033 (2)0.0066 (16)0.0124 (17)0.0009 (15)
C20.046 (2)0.0222 (18)0.033 (2)0.0001 (17)0.0053 (18)0.0019 (16)
C30.033 (2)0.0242 (18)0.036 (2)0.0010 (15)0.0043 (17)0.0058 (16)
C40.060 (3)0.044 (3)0.046 (3)0.010 (2)0.026 (2)0.002 (2)
C50.038 (2)0.039 (2)0.058 (3)0.0099 (19)0.017 (2)0.006 (2)
C60.041 (2)0.037 (2)0.043 (2)0.0130 (18)0.0160 (19)0.0050 (19)
C70.046 (2)0.030 (2)0.032 (2)0.0008 (17)0.0161 (18)0.0053 (16)
N10.0321 (16)0.0241 (16)0.0311 (16)0.0013 (13)0.0114 (13)0.0003 (12)
N20.0341 (17)0.0245 (15)0.0294 (16)0.0015 (13)0.0117 (14)0.0010 (13)
Geometric parameters (Å, º) top
I1—I22.8972 (4)C5—H5A0.9800
I2—I32.9336 (4)C5—H5B0.9800
C1—N11.340 (5)C5—H5C0.9800
C1—C21.379 (6)C6—N11.454 (5)
C1—C41.486 (6)C6—H6A0.9800
C2—C31.377 (6)C6—H6B0.9800
C2—H20.9500C6—H6C0.9800
C3—N21.350 (5)C7—N21.456 (5)
C3—C51.488 (6)C7—H7A0.9800
C4—H4A0.9800C7—H7B0.9800
C4—H4B0.9800C7—H7C0.9800
C4—H4C0.9800N1—N21.361 (4)
I1—I2—I3177.099 (12)H5A—C5—H5C109.5
N1—C1—C2107.1 (4)H5B—C5—H5C109.5
N1—C1—C4122.8 (4)N1—C6—H6A109.5
C2—C1—C4130.1 (4)N1—C6—H6B109.5
C3—C2—C1108.0 (4)H6A—C6—H6B109.5
C3—C2—H2126.0N1—C6—H6C109.5
C1—C2—H2126.0H6A—C6—H6C109.5
N2—C3—C2107.1 (4)H6B—C6—H6C109.5
N2—C3—C5122.0 (4)N2—C7—H7A109.5
C2—C3—C5130.8 (4)N2—C7—H7B109.5
C1—C4—H4A109.5H7A—C7—H7B109.5
C1—C4—H4B109.5N2—C7—H7C109.5
H4A—C4—H4B109.5H7A—C7—H7C109.5
C1—C4—H4C109.5H7B—C7—H7C109.5
H4A—C4—H4C109.5C1—N1—N2109.2 (3)
H4B—C4—H4C109.5C1—N1—C6128.9 (4)
C3—C5—H5A109.5N2—N1—C6121.9 (3)
C3—C5—H5B109.5C3—N2—N1108.5 (3)
H5A—C5—H5B109.5C3—N2—C7129.1 (4)
C3—C5—H5C109.5N1—N2—C7122.3 (3)
N1—C1—C2—C30.3 (5)C2—C3—N2—N10.3 (4)
C4—C1—C2—C3179.5 (4)C5—C3—N2—N1179.4 (4)
C1—C2—C3—N20.4 (4)C2—C3—N2—C7178.6 (4)
C1—C2—C3—C5179.3 (4)C5—C3—N2—C71.1 (6)
C2—C1—N1—N20.2 (4)C1—N1—N2—C30.1 (4)
C4—C1—N1—N2179.7 (4)C6—N1—N2—C3179.3 (3)
C2—C1—N1—C6179.0 (4)C1—N1—N2—C7178.6 (3)
C4—C1—N1—C61.1 (6)C6—N1—N2—C72.2 (5)
 

References

First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCoburn, M. D., Buntain, G. A., Harris, B. W., Hiskey, M. A., Lee, K.-Y. & Ott, D. G. (1991). J. Heterocycl. Chem. 28, 2049–2050.  Google Scholar
First citationElguero, J., Jacquier, R. & Tizane, D. (1969). Bull. Soc. Chim. Fr. 1687–1698.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHan, Y. & Huynh, H. V. (2007). Chem. Commun. pp. 1089.  Google Scholar
First citationHan, Y., Huynh, H. V. & Tan, G. K. (2007). Organometallics, 26, 6581–6585.  Google Scholar
First citationHan, Y., Lee, L. J. & Huynh, H. V. (2010). Chem. Eur. J. 16, 771–773.  Google Scholar
First citationHan, Y., Yuan, D., Teng, Q. & Huynh, H. V. (2011). Organometallics, 30, 1224–1230.  Google Scholar
First citationHobbs, C. F. & Wilson, J. D. (1972). US Patent US 3655690.  Google Scholar
First citationJäger, G. & Eue, L. (1976). German Patent DE 2523143.  Google Scholar
First citationJäger, G. & Lürssen, K. (1976). German Patent DE 2523144.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds