organic compounds
1,2,3,5-Tetramethyl-1H-pyrazol-2-ium triiodide
aUniversity of Innsbruck, Faculty of Chemistry and Pharmacy, Innrain 80, 6020 Innsbruck, Austria
*Correspondence e-mail: gerhard.laus@uibk.ac.at
The title salt, C7H13N2+·I3−, was obtained unintentionally by methylation of 3,6-bis(3,5-dimethylpyrazol-1-yl)-1,2,4,5-tetrazine and subsequent fragmentation. The pyrazolium ring is almost planar (r.m.s. deviation = 0.003 Å) and the triiodide anion deviates slightly from linearity [I—I—I = 177.099 (12)°]. No directional interactions occur in the crystal.
Keywords: pyrazole; triiodide; crystal structure.
CCDC reference: 1499905
Structure description
Quaternary pyrazolium salts have been prepared by alkylation of pyrazoles (Elguero et al., 1969) and a one-pot synthesis of the related 1,2,3,5-tetramethylpyrazolium chloride has been reported (Hobbs & Wilson, 1972). Pyrazolium salts are well known plant-growth regulators (Jäger & Lürssen, 1976) and herbicides (Jäger & Eue, 1976).
The molecular structure of the . The pyrazolium ring is almost perfectly planar (r.m.s. deviation = 0.003 Å). The triiodide ion deviates significantly from linearity with an I1—I2—I3 angle of 177.099 (12)°, which is close to the mean value for triiodide ions taken from the Cambridge Structure Database (Version 5.37; Groom et al., 2016) of 178°. There are no directional classic hydrogen bonds in this structure, although Hirshfeld surface calculation (Spackman & Jayatilaka, 2009) revealed a large percentage of H⋯I interactions (39.5% of the total surface) with distances to the extent of the sum of van der Waals radii. The crystal packing is shown in Fig. 2.
of the title compound is shown in Fig. 1A few related structures (Han & Huynh, 2007; Han et al., 2007, 2010, 2011) of pyrazolium salts and derived N-heterocyclic carbene (NHC) complexes have been reported.
Synthesis and crystallization
A solution of 3,6-bis(3,5-dimethylpyrazol-1-yl)-1,2,4,5-tetrazine (0.5 g, 1.85 mmol; Coburn et al., 1991) and CH3I (0.46 ml, 7.4 mmol) in CHCl3 (4 ml) was heated at 368 K for five days in a sealed tube. Red crystals (0.89 g, 95%) precipitated which were washed with CHCl3 and dried, m.p. 442 K. The PXRD (Mo Kα radiation) of the bulk material was identical to the one calculated from the single-crystal diffraction data (Fig. 3), indicating phase purity. 1H NMR (300 MHz, DMSO-d6): δ 2.40 (s, 6H), 3.89 (s, 6H), 6.53 (s, 1H) p.p.m. 13C NMR (75 MHz, DMSO-d6): δ 11.3, 33.5, 106.9, 145.1 p.p.m. IR (neat): ν 3287, 3084, 2991, 2930, 1680, 1609, 1577, 1480, 1420, 1274, 1161, 1077, 1046, 1023, 968, 941, 842, 816, 756, 719, 659, 646, 621, 588, 554, 516, 470, 420 cm−1.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 1Structural data
CCDC reference: 1499905
10.1107/S2414314616013316/hb4073sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2414314616013316/hb4073Isup2.hkl
Supporting information file. DOI: 10.1107/S2414314616013316/hb4073Isup5.mol
Supporting information file. DOI: 10.1107/S2414314616013316/hb4073Isup6.cml
Data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXTL-XT2014/4 (Sheldrick, 2015); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: Mercury (Macrae et al., 2006).C7H13N2+·I3− | Dx = 2.517 Mg m−3 |
Mr = 505.89 | Melting point: 442 K |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 9.6719 (7) Å | Cell parameters from 9875 reflections |
b = 13.4005 (9) Å | θ = 2.4–26.0° |
c = 11.1874 (8) Å | µ = 6.99 mm−1 |
β = 112.994 (2)° | T = 193 K |
V = 1334.77 (16) Å3 | Prism, red |
Z = 4 | 0.16 × 0.13 × 0.08 mm |
F(000) = 912 |
Bruker D8 QUEST PHOTON 100 diffractometer | 2648 independent reflections |
Radiation source: Incoatec Microfocus | 2400 reflections with I > 2σ(I) |
Multi layered optics monochromator | Rint = 0.028 |
Detector resolution: 10.4 pixels mm-1 | θmax = 26.1°, θmin = 2.4° |
φ and ω scans | h = −11→11 |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | k = −16→16 |
Tmin = 0.397, Tmax = 0.562 | l = −13→13 |
22167 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.026 | H-atom parameters constrained |
wR(F2) = 0.062 | w = 1/[σ2(Fo2) + (0.0207P)2 + 3.0909P] where P = (Fo2 + 2Fc2)/3 |
S = 1.24 | (Δ/σ)max = 0.001 |
2648 reflections | Δρmax = 0.40 e Å−3 |
113 parameters | Δρmin = −1.21 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
I1 | 0.53163 (4) | 0.57210 (2) | 0.18064 (3) | 0.04747 (10) | |
I2 | 0.31387 (3) | 0.58881 (2) | 0.29850 (2) | 0.02818 (8) | |
I3 | 0.09003 (3) | 0.59495 (2) | 0.41519 (3) | 0.04406 (10) | |
C1 | 0.6156 (5) | 0.8272 (3) | 0.4063 (4) | 0.0339 (9) | |
C2 | 0.4931 (5) | 0.8817 (3) | 0.4027 (4) | 0.0368 (9) | |
H2 | 0.4512 | 0.9379 | 0.3490 | 0.044* | |
C3 | 0.4422 (4) | 0.8404 (3) | 0.4907 (4) | 0.0337 (9) | |
C4 | 0.7113 (6) | 0.8394 (4) | 0.3308 (5) | 0.0484 (11) | |
H4A | 0.8144 | 0.8549 | 0.3901 | 0.073* | |
H4B | 0.6719 | 0.8939 | 0.2683 | 0.073* | |
H4C | 0.7107 | 0.7774 | 0.2842 | 0.073* | |
C5 | 0.3137 (5) | 0.8684 (4) | 0.5255 (5) | 0.0458 (11) | |
H5A | 0.2409 | 0.8136 | 0.5030 | 0.069* | |
H5B | 0.2652 | 0.9285 | 0.4774 | 0.069* | |
H5C | 0.3503 | 0.8816 | 0.6190 | 0.069* | |
C6 | 0.7544 (5) | 0.6788 (3) | 0.5368 (4) | 0.0408 (10) | |
H6A | 0.8132 | 0.6818 | 0.4827 | 0.061* | |
H6B | 0.7076 | 0.6128 | 0.5282 | 0.061* | |
H6C | 0.8207 | 0.6903 | 0.6278 | 0.061* | |
C7 | 0.5258 (5) | 0.6932 (3) | 0.6445 (4) | 0.0361 (9) | |
H7A | 0.4429 | 0.7120 | 0.6696 | 0.054* | |
H7B | 0.6206 | 0.6954 | 0.7210 | 0.054* | |
H7C | 0.5092 | 0.6255 | 0.6086 | 0.054* | |
N1 | 0.6383 (4) | 0.7550 (2) | 0.4950 (3) | 0.0294 (7) | |
N2 | 0.5329 (4) | 0.7627 (2) | 0.5471 (3) | 0.0295 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
I1 | 0.04624 (18) | 0.05257 (19) | 0.0537 (2) | −0.00103 (13) | 0.03051 (15) | −0.00763 (14) |
I2 | 0.03148 (14) | 0.02296 (13) | 0.02863 (14) | −0.00115 (9) | 0.01014 (11) | −0.00118 (9) |
I3 | 0.04725 (18) | 0.04483 (18) | 0.05066 (19) | 0.00210 (12) | 0.03060 (15) | 0.00475 (13) |
C1 | 0.043 (2) | 0.0233 (18) | 0.033 (2) | −0.0066 (16) | 0.0124 (17) | −0.0009 (15) |
C2 | 0.046 (2) | 0.0222 (18) | 0.033 (2) | 0.0001 (17) | 0.0053 (18) | 0.0019 (16) |
C3 | 0.033 (2) | 0.0242 (18) | 0.036 (2) | 0.0010 (15) | 0.0043 (17) | −0.0058 (16) |
C4 | 0.060 (3) | 0.044 (3) | 0.046 (3) | −0.010 (2) | 0.026 (2) | 0.002 (2) |
C5 | 0.038 (2) | 0.039 (2) | 0.058 (3) | 0.0099 (19) | 0.017 (2) | −0.006 (2) |
C6 | 0.041 (2) | 0.037 (2) | 0.043 (2) | 0.0130 (18) | 0.0160 (19) | 0.0050 (19) |
C7 | 0.046 (2) | 0.030 (2) | 0.032 (2) | 0.0008 (17) | 0.0161 (18) | 0.0053 (16) |
N1 | 0.0321 (16) | 0.0241 (16) | 0.0311 (16) | 0.0013 (13) | 0.0114 (13) | 0.0003 (12) |
N2 | 0.0341 (17) | 0.0245 (15) | 0.0294 (16) | 0.0015 (13) | 0.0117 (14) | 0.0010 (13) |
I1—I2 | 2.8972 (4) | C5—H5A | 0.9800 |
I2—I3 | 2.9336 (4) | C5—H5B | 0.9800 |
C1—N1 | 1.340 (5) | C5—H5C | 0.9800 |
C1—C2 | 1.379 (6) | C6—N1 | 1.454 (5) |
C1—C4 | 1.486 (6) | C6—H6A | 0.9800 |
C2—C3 | 1.377 (6) | C6—H6B | 0.9800 |
C2—H2 | 0.9500 | C6—H6C | 0.9800 |
C3—N2 | 1.350 (5) | C7—N2 | 1.456 (5) |
C3—C5 | 1.488 (6) | C7—H7A | 0.9800 |
C4—H4A | 0.9800 | C7—H7B | 0.9800 |
C4—H4B | 0.9800 | C7—H7C | 0.9800 |
C4—H4C | 0.9800 | N1—N2 | 1.361 (4) |
I1—I2—I3 | 177.099 (12) | H5A—C5—H5C | 109.5 |
N1—C1—C2 | 107.1 (4) | H5B—C5—H5C | 109.5 |
N1—C1—C4 | 122.8 (4) | N1—C6—H6A | 109.5 |
C2—C1—C4 | 130.1 (4) | N1—C6—H6B | 109.5 |
C3—C2—C1 | 108.0 (4) | H6A—C6—H6B | 109.5 |
C3—C2—H2 | 126.0 | N1—C6—H6C | 109.5 |
C1—C2—H2 | 126.0 | H6A—C6—H6C | 109.5 |
N2—C3—C2 | 107.1 (4) | H6B—C6—H6C | 109.5 |
N2—C3—C5 | 122.0 (4) | N2—C7—H7A | 109.5 |
C2—C3—C5 | 130.8 (4) | N2—C7—H7B | 109.5 |
C1—C4—H4A | 109.5 | H7A—C7—H7B | 109.5 |
C1—C4—H4B | 109.5 | N2—C7—H7C | 109.5 |
H4A—C4—H4B | 109.5 | H7A—C7—H7C | 109.5 |
C1—C4—H4C | 109.5 | H7B—C7—H7C | 109.5 |
H4A—C4—H4C | 109.5 | C1—N1—N2 | 109.2 (3) |
H4B—C4—H4C | 109.5 | C1—N1—C6 | 128.9 (4) |
C3—C5—H5A | 109.5 | N2—N1—C6 | 121.9 (3) |
C3—C5—H5B | 109.5 | C3—N2—N1 | 108.5 (3) |
H5A—C5—H5B | 109.5 | C3—N2—C7 | 129.1 (4) |
C3—C5—H5C | 109.5 | N1—N2—C7 | 122.3 (3) |
N1—C1—C2—C3 | −0.3 (5) | C2—C3—N2—N1 | −0.3 (4) |
C4—C1—C2—C3 | 179.5 (4) | C5—C3—N2—N1 | 179.4 (4) |
C1—C2—C3—N2 | 0.4 (4) | C2—C3—N2—C7 | −178.6 (4) |
C1—C2—C3—C5 | −179.3 (4) | C5—C3—N2—C7 | 1.1 (6) |
C2—C1—N1—N2 | 0.2 (4) | C1—N1—N2—C3 | 0.1 (4) |
C4—C1—N1—N2 | −179.7 (4) | C6—N1—N2—C3 | 179.3 (3) |
C2—C1—N1—C6 | −179.0 (4) | C1—N1—N2—C7 | 178.6 (3) |
C4—C1—N1—C6 | 1.1 (6) | C6—N1—N2—C7 | −2.2 (5) |
References
Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Coburn, M. D., Buntain, G. A., Harris, B. W., Hiskey, M. A., Lee, K.-Y. & Ott, D. G. (1991). J. Heterocycl. Chem. 28, 2049–2050. Google Scholar
Elguero, J., Jacquier, R. & Tizane, D. (1969). Bull. Soc. Chim. Fr. 1687–1698. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Han, Y. & Huynh, H. V. (2007). Chem. Commun. pp. 1089. Google Scholar
Han, Y., Huynh, H. V. & Tan, G. K. (2007). Organometallics, 26, 6581–6585. Google Scholar
Han, Y., Lee, L. J. & Huynh, H. V. (2010). Chem. Eur. J. 16, 771–773. Google Scholar
Han, Y., Yuan, D., Teng, Q. & Huynh, H. V. (2011). Organometallics, 30, 1224–1230. Google Scholar
Hobbs, C. F. & Wilson, J. D. (1972). US Patent US 3655690. Google Scholar
Jäger, G. & Eue, L. (1976). German Patent DE 2523143. Google Scholar
Jäger, G. & Lürssen, K. (1976). German Patent DE 2523144. Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.