organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-Amino-3-methyl­pyridinium 3,4-di­meth­­oxy­benzoate

aResearch and Development Centre, Bharathiar University, Coimbatore 641 046, India, bDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India, and cPost Graduate and Research Department of Physics, The American College, Madurai 625 002, India
*Correspondence e-mail: israel.samuel@gmail.com, chakkaravarthi_2005@yahoo.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 16 August 2016; accepted 19 August 2016; online 26 August 2016)

In the title mol­ecular salt, C6H9N2+·C9H9O4, the cation is protonated at the pyridine N atom. In the crystal, N—H⋯O hydrogen bonds link the components into [010] chains, which feature R22(8) loops. The chains are linked by C—H⋯O hydrogen bonds, forming a three-dimensional network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

We herewith report the synthesis and the crystal structure of the title mol­ecular salt (Fig. 1[link]). The bond lengths are comparable with related structures we have reported recently (Sivakumar et al., 2016a[Sivakumar, P., Sudhahar, S., Israel, S. & Chakkaravarthi, G. (2016a). IUCrData, 1, x160747.],b[Sivakumar, P., Sudhahar, S., Gunasekaran, B., Israel, S. & Chakkaravarthi, G. (2016b). IUCrData, 1, x160817.]). The cation is protonated at the pyridine N1 atom and the anion is deprotonated at hydroxyl O1 atom. In the anion, the dihedral angle between the carboxyl­ate group and its attached benzene ring is 9.81 (9)° and both meth­oxy C atoms lie close to the plane of the ring [deviations for C13 and C14 = 0.172 (2) and 0.181 (2) Å, respectively].

[Figure 1]
Figure 1
The mol­ecular structure of the title mol­ecular salt, with 30% probability displacement ellipsoids.

In the crystal, N—H⋯O hydrogen bonds connect the anions and cations into infinite chains along [010] and these chains are further consolidated by C—H⋯O hydrogen bonds (Table 1[link] and Fig. 2[link]), forming a three-dimensional network. As part of the chain motif, a pair of N—H⋯O (N1—H1A⋯O1i and N2—H2A⋯O2i) hydrogen bonds generate R22(8) loops.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.88 (2) 1.73 (2) 2.6071 (19) 173 (2)
N2—H2A⋯O2i 0.86 2.02 2.8816 (19) 177
N2—H2B⋯O2ii 0.86 2.12 2.9051 (19) 152
C14—H14B⋯O4iii 0.96 2.54 3.281 (3) 134
Symmetry codes: (i) x, y+1, z; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{5\over 2}}]; (iii) -x+1, -y-1, -z+2.
[Figure 2]
Figure 2
The crystal packing of the title mol­ecular salt viewed along the b axis. Hydrogen bonds are shown as dashed lines. H atoms not involving in hydrogen bonding have been omitted for clarity.

Synthesis and crystallization

The title compound was synthesized in acetone by mixing 2-amino-3-methyl­pyridine (0.27 g) and 3,4-dimeth­oxy benzoic acid (0.45 g) in an equimolar ratio. The solution was allowed to evaporate slowly at room temperature. After a period of 25 days, colourless blocks were grown, which were suitable for X-ray diffraction.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C6H9N2+·C9H9O4
Mr 290.31
Crystal system, space group Monoclinic, P21/c
Temperature (K) 295
a, b, c (Å) 11.6972 (8), 6.6637 (5), 19.2325 (17)
β (°) 103.000 (2)
V3) 1460.7 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.28 × 0.24 × 0.20
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.973, 0.981
No. of measured, independent and observed [I > 2σ(I)] reflections 17370, 3587, 2388
Rint 0.030
(sin θ/λ)max−1) 0.665
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.128, 1.03
No. of reflections 3587
No. of parameters 197
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.23, −0.23
Computer programs: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

2-Amino-3-methylpyridinium 3,4-dimethoxybenzoate top
Crystal data top
C6H9N2+·C9H9O4F(000) = 616
Mr = 290.31Dx = 1.320 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4375 reflections
a = 11.6972 (8) Åθ = 2.5–26.4°
b = 6.6637 (5) ŵ = 0.10 mm1
c = 19.2325 (17) ÅT = 295 K
β = 103.000 (2)°Block, colourless
V = 1460.7 (2) Å30.28 × 0.24 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3587 independent reflections
Radiation source: fine-focus sealed tube2388 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω and φ scanθmax = 28.2°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1515
Tmin = 0.973, Tmax = 0.981k = 88
17370 measured reflectionsl = 2524
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0509P)2 + 0.5181P]
where P = (Fo2 + 2Fc2)/3
3587 reflections(Δ/σ)max < 0.001
197 parametersΔρmax = 0.23 e Å3
1 restraintΔρmin = 0.23 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.41591 (14)0.5512 (3)1.29093 (10)0.0411 (4)
H10.47530.49951.27110.049*
C20.43583 (16)0.7179 (3)1.33117 (11)0.0469 (5)
H20.50860.78101.34040.056*
C30.34363 (16)0.7937 (3)1.35878 (11)0.0463 (5)
H30.35620.90891.38680.056*
C40.23615 (15)0.7048 (3)1.34609 (9)0.0372 (4)
C50.22031 (13)0.5260 (2)1.30491 (9)0.0320 (4)
C60.13643 (17)0.7891 (3)1.37408 (11)0.0519 (5)
H6A0.07570.83401.33490.078*
H6B0.10580.68711.40010.078*
H6C0.16390.90021.40510.078*
C70.21553 (13)0.8319 (2)1.14744 (9)0.0308 (4)
C80.12877 (14)0.6888 (3)1.13558 (10)0.0384 (4)
H80.06360.70471.15520.046*
C90.13749 (15)0.5203 (3)1.09443 (10)0.0437 (4)
H90.07830.42421.08700.052*
C100.23282 (15)0.4946 (2)1.06465 (9)0.0382 (4)
C110.32175 (14)0.6394 (2)1.07619 (9)0.0357 (4)
C120.31268 (14)0.8051 (2)1.11728 (9)0.0335 (4)
H120.37210.90081.12510.040*
C130.1576 (2)0.1972 (3)1.00187 (13)0.0630 (6)
H13A0.08830.26600.97700.094*
H13B0.17950.09820.97100.094*
H13C0.14210.13261.04340.094*
C140.49645 (19)0.7559 (3)1.04719 (14)0.0650 (7)
H14A0.53830.77441.09570.098*
H14B0.55050.71921.01850.098*
H14C0.45770.87871.02950.098*
C150.20866 (13)1.0170 (2)1.19126 (9)0.0334 (4)
N10.31064 (12)0.4576 (2)1.27889 (8)0.0357 (3)
N20.12124 (12)0.4201 (2)1.29070 (8)0.0437 (4)
H2A0.11660.31221.26570.052*
H2B0.06190.45971.30650.052*
O10.29953 (10)1.12424 (18)1.20672 (7)0.0466 (3)
O20.11498 (10)1.05519 (19)1.20953 (7)0.0475 (4)
O30.24997 (13)0.3368 (2)1.02274 (8)0.0570 (4)
O40.41272 (11)0.60306 (19)1.04403 (8)0.0512 (4)
H1A0.3010 (17)0.345 (2)1.2541 (10)0.057 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0280 (8)0.0509 (11)0.0454 (11)0.0045 (8)0.0102 (7)0.0035 (9)
C20.0340 (9)0.0511 (11)0.0534 (12)0.0080 (8)0.0050 (8)0.0004 (9)
C30.0473 (11)0.0395 (10)0.0488 (12)0.0028 (8)0.0035 (9)0.0073 (9)
C40.0365 (9)0.0390 (9)0.0353 (10)0.0058 (8)0.0065 (7)0.0013 (8)
C50.0276 (8)0.0360 (9)0.0322 (9)0.0042 (7)0.0064 (6)0.0019 (7)
C60.0494 (11)0.0530 (12)0.0548 (13)0.0096 (9)0.0147 (9)0.0137 (10)
C70.0287 (8)0.0297 (8)0.0343 (9)0.0034 (6)0.0079 (7)0.0018 (7)
C80.0317 (8)0.0390 (9)0.0467 (11)0.0011 (7)0.0133 (7)0.0009 (8)
C90.0388 (10)0.0395 (10)0.0530 (12)0.0106 (8)0.0106 (8)0.0041 (8)
C100.0448 (10)0.0300 (8)0.0393 (10)0.0002 (7)0.0084 (8)0.0043 (7)
C110.0362 (9)0.0336 (9)0.0400 (10)0.0027 (7)0.0144 (7)0.0007 (7)
C120.0301 (8)0.0314 (8)0.0397 (10)0.0013 (7)0.0096 (7)0.0010 (7)
C130.0771 (15)0.0417 (11)0.0633 (15)0.0094 (11)0.0014 (12)0.0126 (10)
C140.0635 (13)0.0511 (12)0.0974 (19)0.0143 (10)0.0537 (13)0.0221 (12)
C150.0288 (8)0.0325 (9)0.0401 (10)0.0036 (7)0.0101 (7)0.0029 (7)
N10.0296 (7)0.0374 (8)0.0405 (9)0.0047 (6)0.0084 (6)0.0028 (7)
N20.0319 (8)0.0446 (9)0.0580 (10)0.0007 (6)0.0171 (7)0.0125 (7)
O10.0320 (6)0.0419 (7)0.0707 (10)0.0059 (5)0.0220 (6)0.0186 (6)
O20.0307 (6)0.0470 (7)0.0699 (9)0.0008 (5)0.0222 (6)0.0142 (7)
O30.0632 (9)0.0441 (8)0.0661 (10)0.0082 (7)0.0199 (7)0.0215 (7)
O40.0521 (8)0.0425 (7)0.0687 (10)0.0046 (6)0.0342 (7)0.0172 (7)
Geometric parameters (Å, º) top
C1—C21.344 (3)C9—H90.9300
C1—N11.353 (2)C10—O31.367 (2)
C1—H10.9300C10—C111.399 (2)
C2—C31.399 (3)C11—O41.367 (2)
C2—H20.9300C11—C121.376 (2)
C3—C41.361 (2)C12—H120.9300
C3—H30.9300C13—O31.414 (2)
C4—C51.420 (2)C13—H13A0.9600
C4—C61.499 (2)C13—H13B0.9600
C5—N21.331 (2)C13—H13C0.9600
C5—N11.346 (2)C14—O41.405 (2)
C6—H6A0.9600C14—H14A0.9600
C6—H6B0.9600C14—H14B0.9600
C6—H6C0.9600C14—H14C0.9600
C7—C81.374 (2)C15—O21.2499 (18)
C7—C121.399 (2)C15—O11.2597 (19)
C7—C151.506 (2)N1—H1A0.881 (9)
C8—C91.390 (3)N2—H2A0.8600
C8—H80.9300N2—H2B0.8600
C9—C101.374 (2)
C2—C1—N1120.86 (17)O3—C10—C11114.93 (15)
C2—C1—H1119.6C9—C10—C11119.47 (16)
N1—C1—H1119.6O4—C11—C12124.78 (15)
C1—C2—C3117.92 (17)O4—C11—C10115.62 (15)
C1—C2—H2121.0C12—C11—C10119.59 (15)
C3—C2—H2121.0C11—C12—C7121.02 (15)
C4—C3—C2122.30 (18)C11—C12—H12119.5
C4—C3—H3118.8C7—C12—H12119.5
C2—C3—H3118.8O3—C13—H13A109.5
C3—C4—C5117.70 (16)O3—C13—H13B109.5
C3—C4—C6122.29 (17)H13A—C13—H13B109.5
C5—C4—C6120.01 (16)O3—C13—H13C109.5
N2—C5—N1117.63 (15)H13A—C13—H13C109.5
N2—C5—C4123.89 (15)H13B—C13—H13C109.5
N1—C5—C4118.48 (15)O4—C14—H14A109.5
C4—C6—H6A109.5O4—C14—H14B109.5
C4—C6—H6B109.5H14A—C14—H14B109.5
H6A—C6—H6B109.5O4—C14—H14C109.5
C4—C6—H6C109.5H14A—C14—H14C109.5
H6A—C6—H6C109.5H14B—C14—H14C109.5
H6B—C6—H6C109.5O2—C15—O1124.38 (16)
C8—C7—C12118.78 (15)O2—C15—C7118.98 (14)
C8—C7—C15122.07 (14)O1—C15—C7116.63 (14)
C12—C7—C15119.15 (14)C5—N1—C1122.70 (16)
C7—C8—C9120.60 (16)C5—N1—H1A118.3 (14)
C7—C8—H8119.7C1—N1—H1A119.0 (14)
C9—C8—H8119.7C5—N2—H2A120.0
C10—C9—C8120.54 (16)C5—N2—H2B120.0
C10—C9—H9119.7H2A—N2—H2B120.0
C8—C9—H9119.7C10—O3—C13117.98 (16)
O3—C10—C9125.60 (16)C11—O4—C14117.25 (14)
N1—C1—C2—C31.4 (3)C9—C10—C11—C120.1 (3)
C1—C2—C3—C40.1 (3)O4—C11—C12—C7179.09 (16)
C2—C3—C4—C51.8 (3)C10—C11—C12—C70.4 (3)
C2—C3—C4—C6178.35 (19)C8—C7—C12—C110.2 (3)
C3—C4—C5—N2177.50 (17)C15—C7—C12—C11179.22 (15)
C6—C4—C5—N22.4 (3)C8—C7—C15—O29.6 (3)
C3—C4—C5—N12.0 (2)C12—C7—C15—O2169.85 (16)
C6—C4—C5—N1178.12 (16)C8—C7—C15—O1170.75 (16)
C12—C7—C8—C90.1 (3)C12—C7—C15—O19.8 (2)
C15—C7—C8—C9179.54 (16)N2—C5—N1—C1178.94 (16)
C7—C8—C9—C100.3 (3)C4—C5—N1—C10.6 (2)
C8—C9—C10—O3179.19 (17)C2—C1—N1—C51.1 (3)
C8—C9—C10—C110.2 (3)C9—C10—O3—C136.7 (3)
O3—C10—C11—O40.1 (2)C11—C10—O3—C13172.67 (17)
C9—C10—C11—O4179.35 (16)C12—C11—O4—C146.9 (3)
O3—C10—C11—C12179.59 (16)C10—C11—O4—C14172.55 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.88 (2)1.73 (2)2.6071 (19)173 (2)
N2—H2A···O2i0.862.022.8816 (19)177
N2—H2B···O2ii0.862.122.9051 (19)152
C14—H14B···O4iii0.962.543.281 (3)134
Symmetry codes: (i) x, y+1, z; (ii) x, y+1/2, z+5/2; (iii) x+1, y1, z+2.
 

Acknowledgements

The authors acknowledge the SAIF, IIT, Madras for the data collection.

References

First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSivakumar, P., Sudhahar, S., Gunasekaran, B., Israel, S. & Chakkaravarthi, G. (2016b). IUCrData, 1, x160817.  Google Scholar
First citationSivakumar, P., Sudhahar, S., Israel, S. & Chakkaravarthi, G. (2016a). IUCrData, 1, x160747.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds