organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-(2-Amino-1,3-thia­zol-4-yl)acetohydrazide

aP.G. Department of Physics and Research Centre, Bharathi College, K. M. Doddi, Mandya 571 422, Karnataka, India, bDepartment of Physics, Govt. College for Women, Kolar 563 101, Karnataka, India, cDepartment of Physics, Govt. College for Women, Mandya 571 401, Karnataka, India, dDepartment of Chemistry, P.C. Jabin Science College, Hubli 580 031, Karnataka, India, and eDepartment of Physics, Govt. First Grade College for Women, Vijayanagara, Mysore 570 018, Karnataka, India
*Correspondence e-mail: rkgowdaphy@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 18 July 2016; accepted 6 August 2016; online 16 August 2016)

In the title compound, C5H8N4OS, the dihedral angle between the acetohydrazide moiety and the thia­zole ring is 80.96 (8)°. In the crystal, mol­ecules are linked by N—H⋯O and N—H⋯N hydrogen bonds generating (010) sheets.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

2-Amino­thia­zole is an important and versatile five-membered heterocyclic scaffold which is applied extensively in various branches of chemistry including dyes and pharmaceutical industries. Derivatives of 2-amino­thia­zoles are used widely by medicinal chemists in drug discovery research: Famotidine is used in the treatment of peptic ulcers and controls gastroesophageal reflux, Abafungin is an anti­microbial agent used for the treatment of dermatomycoses and Cefdinir is used for the treatment of pneumonia, chronic bronchitis, sinusitis, pharyngitis and tonsillitis. Non-steroidal anti-inflammatory drugs (NSAIDs) such as Sudoxicam and Meloxicam are used in arthritis, dysmenorrhea and fever while Pramipexole (Mirapex) has been evaluated as a selective serotonin reuptake inhibitor (SSRI) anti­depressant and demonstrated in a placebo-controlled proof of concept study in bipolar disorder which have been reviewed (Das et al. 2016[Das, D., Sikdar, P. & Bairagi, M. (2016). Eur. J. Med. Chem. 109, 89-98.]).

The crystal structure of the title compound (Fig. 1[link]) reveals an L-shaped conformation for the mol­ecule: the dihedral angle between the acetohydrazide moiety and the thia­zole ring (r.m.s. deviation = 0.011 Å) is 80.96 (8)°. The C2—S1—C1 bond angle of 88.76 (8)° reflects the presence of an un-delocalized lone pair of electrons and is similar to that observed in other thia­zoles.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing 40% probability displacement ellipsoids.

The crystal structure features N—H⋯O and N—H⋯N hydrogen bonds, which link the mol­ecules into (010) sheets (Fig. 2[link], Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N2i 0.84 (2) 2.14 (2) 2.976 (2) 171 (2)
N1—H1B⋯N4ii 0.82 (3) 2.21 (2) 3.023 (2) 172 (2)
N3—H3⋯O1iii 0.84 (2) 1.99 (2) 2.8027 (18) 160.9 (17)
N4—H4C⋯N1iv 0.83 (2) 2.60 (2) 3.300 (2) 144 (2)
N4—H4D⋯O1v 0.91 (3) 2.26 (3) 3.148 (2) 164 (2)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1, y, z+1; (iii) x-1, y, z; (iv) x, y, z-1; (v) -x+1, -y+1, -z.
[Figure 2]
Figure 2
The crystal packing diagram of the title compound. The dotted lines indicate inter­molecular hydrogen bonds. All H atoms which are not involved in these inter­actions have been omitted for clarity.

Synthesis and crystallization

A solution of (2-amino-thia­zol-4-yl)-acetic acid ethyl ester (0.0116 mol) was refluxed with hydrazine hydrate (Hardy et al. 1984[Hardy, K. D., Harrington, F. P. & Stachulski, A. V. (1984). J. Chem. Soc. Perkin Trans. 1, pp. 1227-1235.]) (0.035 mol) in absolute ethanol for 24 h (the completion of the reaction was monitored by thin-layer chromatography). The reaction mixture was concentrated in vacuo to obtain the crude product, which was filtered and washed with cold methanol to remove any traces of impurities of hydrazine. Brown blocks of the title compound were obtained by recrystallization from an ethanol and ethyl acetate solvent mixture by slow evaporation

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C5H8N4OS
Mr 172.21
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 4.9685 (1), 18.8795 (5), 8.2913 (2)
β (°) 91.448 (2)
V3) 777.50 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.36
Crystal size (mm) 0.3 × 0.2 × 0.2
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.917, 0.930
No. of measured, independent and observed [I ≥ 2u(I)] reflections 1364, 1364, 1262
Rint 0.020
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.079, 1.09
No. of reflections 1364
No. of parameters 131
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.28, −0.27
Computer programs: APEX2and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and olex2.refine (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: OLEX2 (Dolomanov et al., 2009); program(s) used to refine structure: olex2.refine (Bourhis et al., 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

2-(2-Amino-1,3-thiazol-4-yl)acetohydrazide top
Crystal data top
C5H8N4OSF(000) = 360.5934
Mr = 172.21Dx = 1.471 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 4.9685 (1) ÅCell parameters from 4593 reflections
b = 18.8795 (5) Åθ = 2.5–30.2°
c = 8.2913 (2) ŵ = 0.36 mm1
β = 91.448 (2)°T = 293 K
V = 777.50 (3) Å3Block, brown
Z = 40.3 × 0.2 × 0.2 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1262 reflections with I 2u(I)
ω and φ scanRint = 0.020
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
θmax = 25.0°, θmin = 2.2°
Tmin = 0.917, Tmax = 0.930h = 55
1364 measured reflectionsk = 022
1364 independent reflectionsl = 09
Refinement top
Refinement on F20 restraints
Least-squares matrix: full0 constraints
R[F2 > 2σ(F2)] = 0.030All H-atom parameters refined
wR(F2) = 0.079 w = 1/[σ2(Fo2) + (0.0366P)2 + 0.2878P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.0002
1364 reflectionsΔρmax = 0.28 e Å3
131 parametersΔρmin = 0.27 e Å3
Special details top

Experimental. Absorption correction: SADABS-2004/1 (Bruker,2004) was used for absorption correction. R(int) was 0.0304 before and 0.0203 after correction. The Ratio of minimum to maximum transmission is 0.8035. The λ/2 correction factor is 0.0015.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7239 (3)0.40966 (9)0.56391 (19)0.0381 (4)
C20.7249 (4)0.29205 (10)0.4459 (2)0.0468 (4)
H20.755 (4)0.2469 (13)0.416 (3)0.066 (6)*
C30.5557 (3)0.33835 (8)0.3747 (2)0.0376 (4)
C40.3736 (4)0.32468 (9)0.2323 (2)0.0422 (4)
H4a0.403 (4)0.2776 (11)0.190 (2)0.055 (6)*
H4b0.197 (4)0.3273 (9)0.259 (2)0.045 (5)*
C50.4288 (3)0.37505 (8)0.09570 (18)0.0340 (4)
N10.7600 (4)0.46674 (9)0.6572 (2)0.0529 (4)
N20.5537 (3)0.40546 (7)0.44149 (16)0.0386 (3)
N30.2152 (3)0.40373 (8)0.02335 (18)0.0441 (4)
N40.2344 (3)0.44932 (11)0.1106 (2)0.0515 (4)
S10.89807 (10)0.33134 (2)0.60529 (5)0.05055 (19)
O10.6576 (2)0.38824 (7)0.05292 (15)0.0462 (3)
H1a0.687 (4)0.5046 (12)0.625 (2)0.054 (6)*
H1b0.883 (5)0.4656 (12)0.725 (3)0.064 (7)*
H30.058 (4)0.3921 (10)0.049 (2)0.049 (5)*
H4c0.358 (5)0.4329 (13)0.164 (3)0.069 (8)*
H4d0.276 (5)0.4936 (15)0.073 (3)0.082 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0376 (9)0.0405 (9)0.0361 (8)0.0058 (7)0.0014 (7)0.0067 (7)
C20.0588 (11)0.0353 (9)0.0467 (10)0.0063 (8)0.0089 (8)0.0049 (7)
C30.0378 (9)0.0358 (8)0.0397 (8)0.0034 (6)0.0082 (7)0.0037 (7)
C40.0360 (9)0.0417 (9)0.0492 (10)0.0106 (7)0.0057 (7)0.0040 (7)
C50.0245 (8)0.0383 (8)0.0391 (8)0.0036 (6)0.0004 (6)0.0091 (6)
N10.0611 (11)0.0479 (9)0.0484 (9)0.0124 (8)0.0243 (8)0.0043 (7)
N20.0381 (7)0.0361 (7)0.0411 (7)0.0034 (6)0.0051 (6)0.0010 (6)
N30.0218 (7)0.0591 (9)0.0513 (9)0.0037 (6)0.0007 (6)0.0029 (7)
N40.0340 (8)0.0659 (11)0.0542 (10)0.0007 (8)0.0079 (7)0.0077 (8)
S10.0572 (3)0.0499 (3)0.0443 (3)0.0186 (2)0.0035 (2)0.01077 (19)
O10.0215 (6)0.0620 (8)0.0551 (7)0.0016 (5)0.0026 (5)0.0102 (6)
Geometric parameters (Å, º) top
C1—N11.336 (2)C4—C51.509 (2)
C1—N21.307 (2)C5—N31.322 (2)
C1—S11.7431 (16)C5—O11.2254 (18)
C2—H20.90 (2)N1—H1a0.84 (2)
C2—C31.339 (3)N1—H1b0.82 (2)
C2—S11.726 (2)N3—N41.411 (2)
C3—C41.492 (2)N3—H30.84 (2)
C3—N21.383 (2)N4—H4c0.83 (3)
C4—H4a0.97 (2)N4—H4d0.91 (3)
C4—H4b0.91 (2)
N2—C1—N1125.00 (15)N3—C5—C4116.10 (14)
S1—C1—N1120.76 (13)O1—C5—C4122.19 (15)
S1—C1—N2114.18 (13)O1—C5—N3121.71 (16)
C3—C2—H2127.3 (14)H1a—N1—C1117.0 (14)
S1—C2—H2122.1 (14)H1b—N1—C1117.5 (16)
S1—C2—C3110.60 (14)H1b—N1—H1a123 (2)
C4—C3—C2126.66 (16)C3—N2—C1110.83 (14)
N2—C3—C2115.62 (16)N4—N3—C5122.56 (15)
N2—C3—C4117.72 (14)H3—N3—C5121.2 (13)
H4a—C4—C3110.4 (12)H3—N3—N4116.0 (13)
H4b—C4—C3111.3 (12)H4c—N4—N3105.0 (17)
H4b—C4—H4a107.0 (16)H4d—N4—N3108.0 (17)
C5—C4—C3111.54 (13)H4d—N4—H4c111 (2)
C5—C4—H4a106.1 (12)C2—S1—C188.76 (8)
C5—C4—H4b110.1 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N2i0.84 (2)2.14 (2)2.976 (2)171 (2)
N1—H1B···N4ii0.82 (3)2.21 (2)3.023 (2)172 (2)
N3—H3···O1iii0.84 (2)1.99 (2)2.8027 (18)160.9 (17)
N4—H4C···N1iv0.83 (2)2.60 (2)3.300 (2)144 (2)
N4—H4D···O1v0.91 (3)2.26 (3)3.148 (2)164 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1; (iii) x1, y, z; (iv) x, y, z1; (v) x+1, y+1, z.
 

Acknowledgements

The authors thank the SAIF IIT Madras, Chennai, for the data collection.

References

First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDas, D., Sikdar, P. & Bairagi, M. (2016). Eur. J. Med. Chem. 109, 89–98.  CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHardy, K. D., Harrington, F. P. & Stachulski, A. V. (1984). J. Chem. Soc. Perkin Trans. 1, pp. 1227–1235.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds