organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-Amino-4-methyl­pyridinium 2-(4-nitro­phen­yl)acetate

aResearch and Development Centre, Bharathiar University, Coimbatore 641 046, India, bDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India, cDepartment of Physics, Alagappa University, Karaikkudi 630 003, India, and dPost graduate and research department of physics, The American college, Madurai 625 002, India
*Correspondence e-mail: israel.samuel@gmail.com, chakkaravarthi_2005@yahoo.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 19 June 2016; accepted 24 July 2016; online 12 August 2016)

In the title mol­ecular salt, C6H9N2+·C8H6NO4, the cation is protonated at its pyridine N atom. In the crystal, the anions are connected by a pair of C—H⋯O contacts into [100] chains, which generate R22(11) loops and these chains are linked via another C—H⋯O contact which encloses an R24(10) loop. Adjacent anions and cations are connected through N—H⋯ O hydrogen bonds, generating an R22(8) loop. Two pairs of anions and cations are linked by N—H⋯O hydrogen bonds, forming a tetra­mer with an R22(8) loop motif. The packing also features weak C—H⋯π and ππ [centroid-to-centroid distances = 3.8972 (11) and 3.9549 (10) Å] inter­actions, which result in a three-dimensional network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The asymmetric unit of of the title salt consists of a 2-amino-4-methyl­pyridinium cation (protonated at the pyridine N atom) and a 2-(4-nitro­phen­yl)acetate anion (Fig. 1[link]). The bond lengths are comparable with reported similar structures (Babu et al., 2014[Babu, K. S. S., Peramaiyan, G., NizamMohideen, M. & Mohan, R. (2014). Acta Cryst. E70, o391-o392.]; Rajkumar et al., 2014[Rajkumar, M. A., Xavier, S. S. J., Anbarasu, S., Devarajan, P. A. & NizamMohideen, M. (2014). Acta Cryst. E70, o473-o474.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title mol­ecular salt, shown with 30% probability displacement ellipsoids.

The anions are connected by C—H⋯O [C3—H3⋯O2iii and C6—H6⋯O3vi] contacts into [100] chains, generating an R22(11) loop; these chains are further linked via C5—H5⋯O3iv [symmetry codes: (iii) 1 + x, y, z; (iv) −x, 1 − y, −z; (vi) x − 1, y, z] contacts, enclosing R24(10) loops (Table 1[link] and Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the N2/C9–C13 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O3i 0.86 1.77 2.6263 (19) 173
N3—H3A⋯O4i 0.86 2.04 2.900 (2) 174
N3—H3B⋯O4ii 0.86 2.02 2.847 (2) 160
C3—H3⋯O2iii 0.93 2.57 3.419 (2) 152
C5—H5⋯O3iv 0.93 2.56 3.478 (2) 170
C13—H13⋯O3v 0.93 2.48 3.396 (2) 168
C6—H6⋯O3vi 0.93 2.70 3.475 (2) 142
C2—H2ACg2vi 0.93 2.79 3.668 (2) 158
Symmetry codes: (i) x, y, z+1; (ii) -x, -y+2, -z+1; (iii) x+1, y, z; (iv) -x, -y+1, -z; (v) -x+1, -y+1, -z+1; (vi) x-1, y, z.
[Figure 2]
Figure 2
A partial view of the crystal packing of the title salt, showing the the anions which are connected via C—H⋯O contacts.

In the extended structure, the anions and cations are connected by N—H⋯ O [N2—H2⋯O3i and N3—H3A⋯O4i] hydrogen bonds, generating an R22(8) loop, and two pairs of anions and cations are linked by N—H⋯O [N3—H3A⋯O4i and N3—H3B⋯O4ii; symmetry codes: (i) x, y, 1 + z; (ii) −x, 2 − y, 1 − z] hydrogen bonds to form a tetra­mer with an R22(8) ring-motif (Table 1[link] and Fig. 3[link]). The packing is consolidated by weak C—H⋯π (Table 1[link]) and ππ [Cg1⋯Cg1vii = 3.8972 (11) Å; Cg2⋯Cg2viii = 3.9549 (10) Å; symmetry codes: (vii) −1 − x, 1 − y, 1 − z; (viii) 1 − x, 2 − y, 2 − z; Cg1 and Cg2 are the centroids of the C1–C6 and N2/C9–C13 rings, respectively] inter­actions, forming a three-dimensional network (Fig. 4[link]).

[Figure 3]
Figure 3
A partial view of the crystal packing of the title salt, showing the hydrogen-bonded tetra­mer connected by hydrogen bonds.
[Figure 4]
Figure 4
The crystal packing of the title compound viewed along a axis. The hydrogen bonds are shown as dashed lines (see Table 1[link]) and C-bound H atoms have been omitted for clarity.

Synthesis and crystallization

4-Nitro­phenyl­acetic acid (1.811 g) and 2-amino-4-methyl­pyridine (1.081 g) in an equimolar ratio were dissolved in 15 ml methanol, and a white solid precipitate formed from the mixture. The precipitate was dissolved in water and kept at room temperature for crystallization. After a span of 12 days, colourless blocks of the title salt were formed.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C6H9N2+·C8H6NO4
Mr 289.29
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 295
a, b, c (Å) 7.9359 (3), 9.6283 (4), 9.6807 (5)
α, β, γ (°) 88.010 (3), 74.936 (2), 81.561 (2)
V3) 706.54 (5)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.24 × 0.22 × 0.18
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.976, 0.982
No. of measured, independent and observed [I > 2σ(I)] reflections 17186, 3659, 2306
Rint 0.028
(sin θ/λ)max−1) 0.686
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.144, 1.03
No. of reflections 3659
No. of parameters 191
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.30, −0.30
Computer programs: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

2-Amino-4-methylpyridinium 2-(4-nitrophenyl)acetate top
Crystal data top
C6H9N2+·C8H6NO4Z = 2
Mr = 289.29F(000) = 304
Triclinic, P1Dx = 1.360 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.9359 (3) ÅCell parameters from 5711 reflections
b = 9.6283 (4) Åθ = 2.2–28.8°
c = 9.6807 (5) ŵ = 0.10 mm1
α = 88.010 (3)°T = 295 K
β = 74.936 (2)°Block, colourless
γ = 81.561 (2)°0.24 × 0.22 × 0.18 mm
V = 706.54 (5) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3659 independent reflections
Radiation source: fine-focus sealed tube2306 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω and φ scanθmax = 29.2°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1010
Tmin = 0.976, Tmax = 0.982k = 1313
17186 measured reflectionsl = 1213
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0524P)2 + 0.3009P]
where P = (Fo2 + 2Fc2)/3
3659 reflections(Δ/σ)max < 0.001
191 parametersΔρmax = 0.30 e Å3
1 restraintΔρmin = 0.30 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5718 (2)0.6802 (2)0.45065 (19)0.0412 (4)
C20.4397 (2)0.7227 (2)0.4973 (2)0.0550 (5)
H2A0.46500.77530.58080.066*
C30.2682 (2)0.6864 (2)0.4186 (2)0.0551 (5)
H30.17700.71510.44940.066*
C40.2294 (2)0.60809 (18)0.2948 (2)0.0404 (4)
C50.3670 (2)0.5717 (2)0.2490 (2)0.0471 (5)
H50.34310.52170.16400.057*
C60.5397 (2)0.6075 (2)0.3262 (2)0.0472 (5)
H60.63190.58260.29400.057*
C70.0415 (2)0.55678 (19)0.2171 (2)0.0484 (5)
H7A0.04120.47570.16030.058*
H7B0.02210.52480.28810.058*
C80.0605 (2)0.65936 (17)0.11973 (19)0.0379 (4)
C90.3858 (2)0.91090 (17)0.88276 (18)0.0372 (4)
C100.5138 (2)0.99143 (18)0.80895 (19)0.0417 (4)
H100.47941.08320.78350.050*
C110.6879 (2)0.93718 (19)0.7739 (2)0.0429 (4)
C120.7369 (2)0.7985 (2)0.8130 (2)0.0467 (5)
H120.85490.75910.79010.056*
C130.6117 (2)0.72288 (18)0.8841 (2)0.0436 (4)
H130.64420.63090.91000.052*
C140.8268 (3)1.0217 (2)0.6948 (3)0.0682 (7)
H14A0.84471.00990.59370.102*
H14B0.93510.99020.72050.102*
H14C0.78951.11900.71960.102*
N10.7538 (2)0.7107 (2)0.5390 (2)0.0562 (5)
N20.43950 (18)0.77853 (14)0.91833 (16)0.0391 (3)
H20.36220.72810.96400.047*
N30.21474 (19)0.95774 (17)0.92141 (19)0.0522 (4)
H3A0.14190.90400.96770.063*
H3B0.17651.04190.90020.063*
O10.7802 (2)0.7713 (2)0.6516 (2)0.0950 (7)
O20.87043 (18)0.6723 (2)0.4977 (2)0.0765 (5)
O30.22208 (15)0.61628 (13)0.07048 (15)0.0491 (4)
O40.01532 (18)0.77352 (15)0.09299 (19)0.0689 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0272 (8)0.0506 (10)0.0424 (10)0.0018 (7)0.0058 (7)0.0070 (8)
C20.0401 (10)0.0739 (14)0.0494 (12)0.0005 (9)0.0104 (9)0.0172 (10)
C30.0323 (9)0.0708 (14)0.0643 (13)0.0084 (9)0.0140 (9)0.0137 (11)
C40.0304 (8)0.0388 (9)0.0466 (10)0.0031 (7)0.0023 (7)0.0079 (8)
C50.0443 (10)0.0527 (11)0.0427 (10)0.0067 (8)0.0082 (8)0.0023 (8)
C60.0350 (9)0.0546 (11)0.0559 (12)0.0095 (8)0.0170 (8)0.0018 (9)
C70.0354 (9)0.0402 (9)0.0595 (12)0.0009 (7)0.0023 (8)0.0085 (8)
C80.0309 (8)0.0349 (8)0.0446 (10)0.0029 (7)0.0054 (7)0.0017 (7)
C90.0340 (8)0.0333 (8)0.0407 (9)0.0001 (7)0.0060 (7)0.0016 (7)
C100.0391 (9)0.0338 (9)0.0475 (10)0.0011 (7)0.0063 (8)0.0066 (7)
C110.0366 (9)0.0431 (10)0.0454 (10)0.0058 (7)0.0048 (8)0.0058 (8)
C120.0307 (8)0.0465 (10)0.0563 (12)0.0029 (7)0.0050 (8)0.0063 (9)
C130.0392 (9)0.0349 (9)0.0519 (11)0.0035 (7)0.0089 (8)0.0058 (8)
C140.0468 (12)0.0644 (14)0.0838 (17)0.0124 (10)0.0001 (11)0.0242 (12)
N10.0339 (8)0.0682 (12)0.0592 (11)0.0022 (8)0.0060 (8)0.0128 (9)
N20.0336 (7)0.0326 (7)0.0456 (8)0.0032 (6)0.0020 (6)0.0056 (6)
N30.0333 (8)0.0400 (8)0.0729 (12)0.0029 (6)0.0007 (7)0.0078 (8)
O10.0544 (10)0.1393 (18)0.0742 (12)0.0096 (10)0.0054 (9)0.0338 (12)
O20.0312 (7)0.1038 (13)0.0919 (13)0.0129 (8)0.0119 (8)0.0181 (10)
O30.0323 (6)0.0398 (7)0.0637 (9)0.0007 (5)0.0045 (6)0.0091 (6)
O40.0401 (7)0.0479 (8)0.1027 (13)0.0041 (6)0.0005 (8)0.0292 (8)
Geometric parameters (Å, º) top
C1—C21.362 (3)C9—N21.346 (2)
C1—C61.362 (3)C9—C101.399 (2)
C1—N11.468 (2)C10—C111.362 (2)
C2—C31.377 (3)C10—H100.9300
C2—H2A0.9300C11—C121.402 (2)
C3—C41.379 (3)C11—C141.498 (3)
C3—H30.9300C12—C131.346 (3)
C4—C51.373 (3)C12—H120.9300
C4—C71.503 (2)C13—N21.351 (2)
C5—C61.380 (3)C13—H130.9300
C5—H50.9300C14—H14A0.9600
C6—H60.9300C14—H14B0.9600
C7—C81.514 (2)C14—H14C0.9600
C7—H7A0.9700N1—O21.207 (2)
C7—H7B0.9700N1—O11.210 (2)
C8—O41.227 (2)N2—H20.8600
C8—O31.2583 (19)N3—H3A0.8600
C9—N31.325 (2)N3—H3B0.8600
C2—C1—C6122.03 (16)N2—C9—C10118.22 (14)
C2—C1—N1119.00 (18)C11—C10—C9120.88 (16)
C6—C1—N1118.95 (17)C11—C10—H10119.6
C1—C2—C3118.81 (19)C9—C10—H10119.6
C1—C2—H2A120.6C10—C11—C12118.63 (16)
C3—C2—H2A120.6C10—C11—C14121.66 (17)
C2—C3—C4121.02 (18)C12—C11—C14119.70 (17)
C2—C3—H3119.5C13—C12—C11119.53 (16)
C4—C3—H3119.5C13—C12—H12120.2
C5—C4—C3118.20 (16)C11—C12—H12120.2
C5—C4—C7120.93 (18)C12—C13—N2121.03 (16)
C3—C4—C7120.76 (17)C12—C13—H13119.5
C4—C5—C6121.57 (18)N2—C13—H13119.5
C4—C5—H5119.2C11—C14—H14A109.5
C6—C5—H5119.2C11—C14—H14B109.5
C1—C6—C5118.28 (17)H14A—C14—H14B109.5
C1—C6—H6120.9C11—C14—H14C109.5
C5—C6—H6120.9H14A—C14—H14C109.5
C4—C7—C8117.54 (14)H14B—C14—H14C109.5
C4—C7—H7A107.9O2—N1—O1122.69 (19)
C8—C7—H7A107.9O2—N1—C1118.86 (19)
C4—C7—H7B107.9O1—N1—C1118.44 (19)
C8—C7—H7B107.9C9—N2—C13121.70 (15)
H7A—C7—H7B107.2C9—N2—H2119.2
O4—C8—O3125.07 (16)C13—N2—H2119.2
O4—C8—C7120.19 (15)C9—N3—H3A120.0
O3—C8—C7114.73 (14)C9—N3—H3B120.0
N3—C9—N2117.87 (15)H3A—N3—H3B120.0
N3—C9—C10123.90 (15)
C6—C1—C2—C32.4 (3)N3—C9—C10—C11179.25 (18)
N1—C1—C2—C3176.04 (19)N2—C9—C10—C110.1 (3)
C1—C2—C3—C40.2 (3)C9—C10—C11—C120.1 (3)
C2—C3—C4—C52.4 (3)C9—C10—C11—C14180.0 (2)
C2—C3—C4—C7173.96 (19)C10—C11—C12—C130.1 (3)
C3—C4—C5—C62.2 (3)C14—C11—C12—C13180.0 (2)
C7—C4—C5—C6174.15 (17)C11—C12—C13—N20.1 (3)
C2—C1—C6—C52.6 (3)C2—C1—N1—O2179.68 (19)
N1—C1—C6—C5175.85 (17)C6—C1—N1—O21.2 (3)
C4—C5—C6—C10.2 (3)C2—C1—N1—O10.9 (3)
C5—C4—C7—C8102.7 (2)C6—C1—N1—O1177.6 (2)
C3—C4—C7—C881.0 (2)N3—C9—N2—C13179.47 (17)
C4—C7—C8—O48.6 (3)C10—C9—N2—C130.3 (3)
C4—C7—C8—O3172.25 (17)C12—C13—N2—C90.3 (3)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the N2/C9–C13 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2···O3i0.861.772.6263 (19)173
N3—H3A···O4i0.862.042.900 (2)174
N3—H3B···O4ii0.862.022.847 (2)160
C3—H3···O2iii0.932.573.419 (2)152
C5—H5···O3iv0.932.563.478 (2)170
C13—H13···O3v0.932.483.396 (2)168
C6—H6···O3vi0.932.703.475 (2)142
C2—H2A···Cg2vi0.932.793.668 (2)158
Symmetry codes: (i) x, y, z+1; (ii) x, y+2, z+1; (iii) x+1, y, z; (iv) x, y+1, z; (v) x+1, y+1, z+1; (vi) x1, y, z.
 

Acknowledgements

The authors acknowledge the SAIF, IIT, Madras, for the data collection.

References

First citationBabu, K. S. S., Peramaiyan, G., NizamMohideen, M. & Mohan, R. (2014). Acta Cryst. E70, o391–o392.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationRajkumar, M. A., Xavier, S. S. J., Anbarasu, S., Devarajan, P. A. & NizamMohideen, M. (2014). Acta Cryst. E70, o473–o474.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds