metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(η2,η2-Cyclo­octa-1,5-diene)[2-(di­phenyl­phos­phanyl­meth­yl)pyridine-κ2N,P]rhodium(I) tetra­fluorido­borate 1,2-di­chloro­ethane monosolvate

aLeibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
*Correspondence e-mail: hans-joachim.drexler@catalysis.de

Edited by M. Bolte, Goethe-Universität Frankfurt Germany (Received 12 August 2016; accepted 16 August 2016; online 26 August 2016)

The title compound, [Rh(C8H12)(C18H16NP)]BF4 has been prepared as a precatalyst for applications in rhodium-catalysed additions of carbocyclic acids to terminal alkynes leading to anti-Markovnikov Z-enol esters. Here the triclinic pseudopolymorph of the title compound is presented. In contrast to the earlier reported pseudopolymorph (ortho­rhom­bic space group) [Wei et al. (2013). Chem. Eur. J. 19, 12067–12076], the triclinic polymorph contains half a mol­ecule of di­chloro­methane as solvent in the asymmetric unit. The rhodium(I) atom exhibits a square-planar coordination. The estimated diffraction contribution of the disordered solvent (a half mol­ecule of di­chloro­ethane per asymmetric unit) was subtracted from the observed diffraction data using the SQUEEZE [Spek (2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]). Acta Cryst. C71, 9–16] routine in PLATON. The given chemical formula and other crystal data do not take the solvent into account.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound was formed by the exchange of aectylacetonate (acac) by dppmp in presence of HBF4 starting from the precursor [Rh(acac)(COD)] (Fennis et al., 1990[Fennis, P. J., Budzelaar, P. H. M., Frijns, J. H. G. & Orpen, A. G. (1990). J. Organomet. Chem. 393, 287-298.]; Wei et al., 2013[Wei, S., Pedroni, J., Meissner, A., Lumbroso, A., Drexler, H.-J., Heller, D. & Breit, B. (2013). Chem. Eur. J. 19, 12067-12076.]). Two pseudo-polymorphs (triclinic, space group P[\overline{1}] with di­chloro­methane as solvent; ortho­rhom­bic, space group Pbca, no solvent) of the title compound were observed, of which the triclinic one is presented here (Fig. 1[link]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with atom labelling and displacement ellipsoids drawn at the 50% probability level. All H atoms have been omitted for clarity.

The main difference to the earlier reported pseudo polymorph (Wei et al., 2013[Wei, S., Pedroni, J., Meissner, A., Lumbroso, A., Drexler, H.-J., Heller, D. & Breit, B. (2013). Chem. Eur. J. 19, 12067-12076.]; CCDC 914750) is the half mol­ecule of a disordered 1,2-di­chloro­ethane solvate. On the other hand, there are only minor differences in the conformation of the complex cations (Figs. 2[link] and 3[link]) and the bond lengths and angles are nearly equal (Table 1[link]). An important structural feature is the square-planar coordination of the rhodium(I) atom. The dihedral angles between the P/Rh/N and X/Rh/X (X = centroid of the double bond) planes are 4.7° (triclinic polymorph) and 2.8° (pseudo polymorph). The r.m.s. deviation of P/N/X/X to this plane is in both cases very small (0.0333 and 0.0474 Å, respectively).

Table 1
Selected distances and angles (Å, °) of the two polymorphs of [Rh(COD)(dppmp)]BF4

CM are the centroids of the COD double bonds.

  Triclinic polymorph Ortho­rhom­bic pseudopolymorph
Rh—P 2.2371 (4) 2.2491 (5)
Rh—N 2.1295 (14) 2.1333 (17)
Rh—CM 2.019 (2), 2.140 (2) 2.119 (2), 2.140 (2)
P—Rh—N 80.58 (4) 80.81 (5)
CM—Rh—CM 86.48 (7) 86.47 (8)
[Figure 2]
Figure 2
Front view (left) and side view (right) of triclinic polymorph of [Rh(COD)(dppmp)]+ (ellipsoids drawn at the 50% probability level).
[Figure 3]
Figure 3
Front view (left) and side view (right) of pseudopolymorph of [Rh(COD)(dppmp)]+ (ellipsoids drawn at the 50% probability level).

Synthesis and crystallization

A dry argon-flushed Schlenk tube was charged with dppmp (110 mg), Rh(COD)(acac) (124 mg) and THF (40 ml). The HBF4 in water (40%) (50 µL) was added directly. After stirring for 16 h under room temperature, the solvent was removed under vacuum. Orange-coloured rystals suitable for X-ray crystallography were obtained by slow diffusion of diethyl ether into a di­chloro­ethane solution. The reaction scheme is shown in Fig. 4[link].

[Figure 4]
Figure 4
Reaction scheme.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The estimated diffraction contribution of the disordered solvent (a half mol­ecule of di­chloro­ethane per asymmetric unit) was subtracted from the observed diffraction data using SQUEEZE (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) in PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Table 2
Experimental details

Crystal data
Chemical formula [Rh(C8H12)(C18H16NP)]BF4
Mr 575.18
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 150
a, b, c (Å) 8.7638 (2), 9.2286 (2), 16.7192 (3)
α, β, γ (°) 89.402 (1), 88.904 (1), 76.121 (1)
V3) 1312.47 (5)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.75
Crystal size (mm) 0.46 × 0.40 × 0.21
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.639, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 17088, 5176, 4973
Rint 0.017
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.054, 1.05
No. of reflections 5176
No. of parameters 307
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.41, −0.46
Computer programs: APEX2 (Bruker, 2014[Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2013[Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010) and PLATON (Spek, 2009).

(η2,η2-cycloocta-1,5-diene)[2-(diphenylphosphanylmethyl)pyridine-κ2N,P]rhodium(I) tetrafluoridoborate 1,2-dichloroethane monosolvate top
Crystal data top
[Rh(C8H12)(C18H16NP)]BF4Z = 2
Mr = 575.18F(000) = 584
Triclinic, P1Dx = 1.455 Mg m3
a = 8.7638 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.2286 (2) ÅCell parameters from 9922 reflections
c = 16.7192 (3) Åθ = 2.3–27.5°
α = 89.402 (1)°µ = 0.75 mm1
β = 88.904 (1)°T = 150 K
γ = 76.121 (1)°Part of block, orange
V = 1312.47 (5) Å30.46 × 0.40 × 0.21 mm
Data collection top
Bruker APEXII CCD
diffractometer
5176 independent reflections
Radiation source: fine-focus sealed tube4973 reflections with I > 2σ(I)
Detector resolution: 8.3333 pixels mm-1Rint = 0.017
φ and ω scansθmax = 26.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 1010
Tmin = 0.639, Tmax = 0.746k = 1011
17088 measured reflectionsl = 2020
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.054 w = 1/[σ2(Fo2) + (0.0262P)2 + 0.9042P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
5176 reflectionsΔρmax = 0.41 e Å3
307 parametersΔρmin = 0.46 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rh10.06970 (2)0.24000 (2)0.32462 (2)0.01711 (5)
P10.00629 (5)0.06162 (5)0.25753 (2)0.01705 (9)
N10.09923 (16)0.19334 (16)0.40800 (8)0.0195 (3)
C10.0567 (2)0.04882 (18)0.34135 (10)0.0204 (3)
H1A0.12880.10940.32350.025*
H1B0.03950.11710.36220.025*
C20.13519 (19)0.05816 (18)0.40573 (10)0.0187 (3)
C30.2401 (2)0.0188 (2)0.46045 (10)0.0237 (4)
H30.26320.07650.45780.028*
C40.3105 (2)0.1194 (2)0.51872 (11)0.0264 (4)
H40.38040.09340.55730.032*
C50.2774 (2)0.2587 (2)0.51993 (11)0.0262 (4)
H50.32640.33050.55850.031*
C60.1723 (2)0.2917 (2)0.46427 (11)0.0246 (4)
H60.15020.38750.46550.030*
C70.18679 (19)0.12701 (19)0.20282 (10)0.0210 (3)
C80.2745 (2)0.0289 (2)0.17701 (11)0.0270 (4)
H80.24070.07480.18840.032*
C90.4113 (2)0.0836 (3)0.13474 (12)0.0353 (5)
H90.47090.01710.11690.042*
C100.4612 (2)0.2350 (3)0.11839 (12)0.0378 (5)
H100.55480.27170.08930.045*
C110.3758 (2)0.3324 (2)0.14405 (12)0.0364 (5)
H110.41090.43610.13270.044*
C120.2384 (2)0.2795 (2)0.18655 (11)0.0274 (4)
H120.17990.34700.20440.033*
C130.12691 (19)0.06447 (18)0.19045 (10)0.0191 (3)
C140.2673 (2)0.15094 (19)0.22032 (10)0.0217 (3)
H140.28770.14940.27590.026*
C150.3777 (2)0.2394 (2)0.16938 (11)0.0255 (4)
H150.47250.29890.19030.031*
C160.3497 (2)0.2407 (2)0.08854 (12)0.0303 (4)
H160.42530.30130.05380.036*
C170.2122 (2)0.1543 (3)0.05804 (12)0.0379 (5)
H170.19350.15500.00230.045*
C180.1007 (2)0.0661 (2)0.10865 (11)0.0312 (4)
H180.00630.00660.08730.037*
C190.0899 (2)0.46505 (19)0.36720 (11)0.0233 (4)
H190.00800.52510.39360.028*
C200.1787 (2)0.35865 (19)0.41578 (10)0.0223 (3)
H200.13530.35560.47140.027*
C210.3542 (2)0.2977 (2)0.40802 (11)0.0263 (4)
H21A0.38420.20370.43920.032*
H21B0.40750.36990.43160.032*
C220.4131 (2)0.2669 (2)0.32124 (11)0.0266 (4)
H22A0.43440.35920.29780.032*
H22B0.51330.18960.32120.032*
C230.2964 (2)0.21490 (19)0.26906 (11)0.0229 (4)
H230.33920.11380.24560.027*
C240.1833 (2)0.3075 (2)0.22174 (10)0.0239 (4)
H240.16190.26020.17090.029*
C250.1473 (2)0.4753 (2)0.21814 (11)0.0289 (4)
H25A0.04110.51340.19590.035*
H25B0.22370.50600.18130.035*
C260.1537 (2)0.5468 (2)0.30030 (11)0.0276 (4)
H26A0.26400.54740.31160.033*
H26B0.09190.65180.29870.033*
B10.6485 (2)0.6941 (3)0.33427 (13)0.0267 (4)
F10.74911 (15)0.65862 (16)0.26872 (7)0.0450 (3)
F20.73545 (15)0.67145 (14)0.40401 (7)0.0402 (3)
F30.53948 (16)0.60835 (16)0.33567 (8)0.0483 (3)
F40.57017 (14)0.84420 (14)0.32976 (8)0.0403 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rh10.01708 (7)0.01760 (7)0.01754 (8)0.00597 (5)0.00292 (5)0.00431 (5)
P10.0170 (2)0.0176 (2)0.0168 (2)0.00476 (15)0.00187 (15)0.00293 (16)
N10.0178 (7)0.0226 (7)0.0184 (7)0.0051 (5)0.0011 (5)0.0036 (6)
C10.0221 (8)0.0196 (8)0.0202 (8)0.0063 (6)0.0022 (6)0.0014 (6)
C20.0165 (7)0.0219 (8)0.0170 (8)0.0031 (6)0.0020 (6)0.0009 (6)
C30.0241 (9)0.0269 (9)0.0214 (9)0.0085 (7)0.0000 (7)0.0014 (7)
C40.0223 (8)0.0374 (10)0.0200 (9)0.0086 (7)0.0030 (7)0.0006 (7)
C50.0235 (9)0.0330 (10)0.0207 (9)0.0043 (7)0.0037 (7)0.0094 (7)
C60.0238 (9)0.0252 (9)0.0250 (9)0.0061 (7)0.0025 (7)0.0079 (7)
C70.0170 (8)0.0270 (9)0.0178 (8)0.0032 (7)0.0032 (6)0.0029 (7)
C80.0230 (9)0.0354 (10)0.0235 (9)0.0091 (7)0.0027 (7)0.0049 (7)
C90.0217 (9)0.0618 (14)0.0253 (10)0.0154 (9)0.0023 (7)0.0063 (9)
C100.0193 (9)0.0660 (15)0.0219 (10)0.0015 (9)0.0026 (7)0.0023 (9)
C110.0301 (10)0.0407 (11)0.0302 (11)0.0067 (9)0.0049 (8)0.0058 (9)
C120.0255 (9)0.0283 (9)0.0256 (9)0.0016 (7)0.0044 (7)0.0009 (7)
C130.0197 (8)0.0186 (8)0.0194 (8)0.0059 (6)0.0042 (6)0.0047 (6)
C140.0253 (8)0.0206 (8)0.0197 (8)0.0066 (7)0.0004 (7)0.0023 (6)
C150.0234 (9)0.0228 (9)0.0279 (9)0.0012 (7)0.0007 (7)0.0016 (7)
C160.0279 (9)0.0327 (10)0.0261 (10)0.0006 (8)0.0066 (7)0.0077 (8)
C170.0328 (10)0.0549 (13)0.0189 (9)0.0033 (9)0.0010 (8)0.0062 (9)
C180.0246 (9)0.0419 (11)0.0215 (9)0.0029 (8)0.0006 (7)0.0021 (8)
C190.0248 (9)0.0198 (8)0.0258 (9)0.0061 (7)0.0031 (7)0.0094 (7)
C200.0236 (8)0.0257 (9)0.0203 (8)0.0106 (7)0.0008 (7)0.0088 (7)
C210.0217 (9)0.0311 (9)0.0272 (9)0.0084 (7)0.0032 (7)0.0001 (7)
C220.0197 (8)0.0290 (9)0.0317 (10)0.0070 (7)0.0033 (7)0.0043 (8)
C230.0207 (8)0.0235 (8)0.0257 (9)0.0083 (7)0.0091 (7)0.0062 (7)
C240.0283 (9)0.0283 (9)0.0187 (8)0.0140 (7)0.0067 (7)0.0048 (7)
C250.0350 (10)0.0283 (9)0.0260 (10)0.0129 (8)0.0008 (8)0.0034 (7)
C260.0319 (10)0.0193 (8)0.0326 (10)0.0078 (7)0.0005 (8)0.0023 (7)
B10.0223 (10)0.0352 (11)0.0237 (10)0.0086 (8)0.0005 (8)0.0040 (8)
F10.0380 (7)0.0615 (8)0.0326 (7)0.0071 (6)0.0122 (5)0.0084 (6)
F20.0400 (7)0.0453 (7)0.0307 (6)0.0002 (5)0.0116 (5)0.0063 (5)
F30.0461 (8)0.0579 (8)0.0510 (8)0.0323 (7)0.0007 (6)0.0018 (7)
F40.0370 (7)0.0390 (7)0.0408 (7)0.0011 (5)0.0031 (5)0.0002 (5)
Geometric parameters (Å, º) top
Rh1—N12.1295 (14)C13—C141.394 (2)
Rh1—C242.1323 (17)C14—C151.390 (2)
Rh1—C232.1395 (16)C14—H140.9500
Rh1—P12.2371 (4)C15—C161.379 (3)
Rh1—C202.2423 (16)C15—H150.9500
Rh1—C192.2503 (17)C16—C171.380 (3)
P1—C71.8135 (17)C16—H160.9500
P1—C131.8166 (16)C17—C181.391 (3)
P1—C11.8331 (17)C17—H170.9500
N1—C61.354 (2)C18—H180.9500
N1—C21.359 (2)C19—C201.368 (3)
C1—C21.508 (2)C19—C261.515 (3)
C1—H1A0.9900C19—H191.0000
C1—H1B0.9900C20—C211.509 (2)
C2—C31.391 (2)C20—H201.0000
C3—C41.383 (3)C21—C221.537 (3)
C3—H30.9500C21—H21A0.9900
C4—C51.384 (3)C21—H21B0.9900
C4—H40.9500C22—C231.521 (2)
C5—C61.380 (3)C22—H22A0.9900
C5—H50.9500C22—H22B0.9900
C6—H60.9500C23—C241.396 (3)
C7—C81.397 (3)C23—H231.0000
C7—C121.397 (3)C24—C251.506 (3)
C8—C91.388 (3)C24—H241.0000
C8—H80.9500C25—C261.538 (3)
C9—C101.386 (3)C25—H25A0.9900
C9—H90.9500C25—H25B0.9900
C10—C111.376 (3)C26—H26A0.9900
C10—H100.9500C26—H26B0.9900
C11—C121.392 (3)B1—F31.379 (2)
C11—H110.9500B1—F11.385 (2)
C12—H120.9500B1—F21.392 (2)
C13—C181.392 (3)B1—F41.393 (3)
N1—Rh1—C24164.31 (6)C13—C14—H14119.8
N1—Rh1—C23156.54 (6)C16—C15—C14120.08 (17)
C24—Rh1—C2338.15 (7)C16—C15—H15120.0
N1—Rh1—P180.58 (4)C14—C15—H15120.0
C24—Rh1—P192.74 (5)C15—C16—C17120.07 (17)
C23—Rh1—P197.92 (5)C15—C16—H16120.0
N1—Rh1—C2093.09 (6)C17—C16—H16120.0
C24—Rh1—C2097.17 (7)C16—C17—C18120.23 (18)
C23—Rh1—C2081.31 (7)C16—C17—H17119.9
P1—Rh1—C20162.34 (5)C18—C17—H17119.9
N1—Rh1—C19100.93 (6)C17—C18—C13120.29 (17)
C24—Rh1—C1981.10 (7)C17—C18—H18119.9
C23—Rh1—C1987.72 (6)C13—C18—H18119.9
P1—Rh1—C19161.96 (5)C20—C19—C26125.25 (16)
C20—Rh1—C1935.45 (7)C20—C19—Rh171.96 (10)
C7—P1—C13105.76 (8)C26—C19—Rh1110.01 (11)
C7—P1—C1105.55 (8)C20—C19—H19113.9
C13—P1—C1107.98 (8)C26—C19—H19113.9
C7—P1—Rh1114.28 (6)Rh1—C19—H19113.9
C13—P1—Rh1121.83 (5)C19—C20—C21125.40 (16)
C1—P1—Rh1100.07 (6)C19—C20—Rh172.60 (10)
C6—N1—C2117.88 (14)C21—C20—Rh1106.52 (11)
C6—N1—Rh1123.16 (12)C19—C20—H20114.5
C2—N1—Rh1118.96 (11)C21—C20—H20114.5
C2—C1—P1107.80 (11)Rh1—C20—H20114.5
C2—C1—H1A110.1C20—C21—C22113.70 (15)
P1—C1—H1A110.1C20—C21—H21A108.8
C2—C1—H1B110.1C22—C21—H21A108.8
P1—C1—H1B110.1C20—C21—H21B108.8
H1A—C1—H1B108.5C22—C21—H21B108.8
N1—C2—C3121.73 (15)H21A—C21—H21B107.7
N1—C2—C1117.45 (14)C23—C22—C21113.02 (14)
C3—C2—C1120.82 (15)C23—C22—H22A109.0
C4—C3—C2119.49 (17)C21—C22—H22A109.0
C4—C3—H3120.3C23—C22—H22B109.0
C2—C3—H3120.3C21—C22—H22B109.0
C5—C4—C3118.97 (16)H22A—C22—H22B107.8
C5—C4—H4120.5C24—C23—C22125.30 (16)
C3—C4—H4120.5C24—C23—Rh170.65 (10)
C6—C5—C4119.06 (16)C22—C23—Rh1113.35 (11)
C6—C5—H5120.5C24—C23—H23113.4
C4—C5—H5120.5C22—C23—H23113.4
N1—C6—C5122.84 (17)Rh1—C23—H23113.4
N1—C6—H6118.6C23—C24—C25126.26 (16)
C5—C6—H6118.6C23—C24—Rh171.21 (10)
C8—C7—C12119.70 (17)C25—C24—Rh1109.23 (12)
C8—C7—P1121.64 (14)C23—C24—H24113.9
C12—C7—P1118.66 (14)C25—C24—H24113.9
C9—C8—C7119.72 (19)Rh1—C24—H24113.9
C9—C8—H8120.1C24—C25—C26113.05 (15)
C7—C8—H8120.1C24—C25—H25A109.0
C10—C9—C8120.2 (2)C26—C25—H25A109.0
C10—C9—H9119.9C24—C25—H25B109.0
C8—C9—H9119.9C26—C25—H25B109.0
C11—C10—C9120.35 (18)H25A—C25—H25B107.8
C11—C10—H10119.8C19—C26—C25112.51 (15)
C9—C10—H10119.8C19—C26—H26A109.1
C10—C11—C12120.2 (2)C25—C26—H26A109.1
C10—C11—H11119.9C19—C26—H26B109.1
C12—C11—H11119.9C25—C26—H26B109.1
C11—C12—C7119.78 (19)H26A—C26—H26B107.8
C11—C12—H12120.1F3—B1—F1110.61 (17)
C7—C12—H12120.1F3—B1—F2110.21 (17)
C18—C13—C14118.88 (15)F1—B1—F2109.38 (16)
C18—C13—P1121.84 (13)F3—B1—F4109.06 (16)
C14—C13—P1118.95 (13)F1—B1—F4109.12 (17)
C15—C14—C13120.44 (16)F2—B1—F4108.41 (16)
C15—C14—H14119.8
Selected distances and angles (Å, °) of the two polymorphs of [Rh(COD)(dppmp)]BF4 top
CM are the centroids of the COD double bonds.
Triclinic polymorphOrthorhombic pseudopolymorph
Rh—P2.2371 (4)2.2491 (5)
Rh—N2.1295 (14)2.1333 (17)
Rh—CM2.019 (2), 2.140 (2)2.119 (2), 2.140 (2)
P—Rh—N80.58 (4)80.81 (5)
CM—Rh—CM86.48 (7)86.47 (8)
 

Acknowledgements

We thank our technical staff for assistance. This work was supported by the Deutsche Forschungsgemeinschaft (HE2890/7–1). The publication of this article was funded by the Open Access Fund of the Leibniz Association.

References

First citationBruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFennis, P. J., Budzelaar, P. H. M., Frijns, J. H. G. & Orpen, A. G. (1990). J. Organomet. Chem. 393, 287–298.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWei, S., Pedroni, J., Meissner, A., Lumbroso, A., Drexler, H.-J., Heller, D. & Breit, B. (2013). Chem. Eur. J. 19, 12067–12076.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds