organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

10-Methyl-10H-pheno­thia­zine

aResearch Department of Physics, S.D.N.B. Vaishnav College for Women, Chromepet, Chennai 600 044, India, and bIndustrial Chemistry Polymer Division, CSIR Central Leather Research Institute, Chennai 600 020, India
*Correspondence e-mail: lakssdnbvc@gmail.com

Edited by M. Bolte, Goethe-Universität Frankfurt Germany (Received 8 August 2016; accepted 11 August 2016; online 26 August 2016)

In the title compound C13H11NS, the pheno­thia­zine unit has a non-planar butterfly structure, and the central six-membered ring adopts a boat conformation. The dihedral angle between the two outer aromatic rings of the pheno­thia­zine unit is 39.53 (10)°. In the crystal, a ππ inter­action with a centroid–centroid distance of 3.6871 (12) Å is observed between the aromatic rings of neighbouring mol­ecules.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Pheno­thia­zine derivatives possess anti-tumor, anti-bacterial, anti-plasmid and anti-tuberculosis activities (He et al., 2015[He, C. X., Meng, H., Zhang, X., Cui, H. Q. & Yin, D. L. (2015). Chin. Chem. Lett. 26, 951-954.]). Trifluoperazine, a pheno­thia­zine derivative, is used for treating schizophrenia by minimizing hallucinations, delusions and disorganized thought and speech (Stanković et al., 2015[Stanković, D., Dimitrijević, T., Kuzmanović, D., Krstić, M. P. & Petković, B. B. (2015). RSC Adv. 5, 107058-107063.]). The photodegradation of tricyclic cytosine, another pheno­thia­zine derivative, finds application as a switching mechanism in DNA-based nanodevices (Preus et al., 2013[Preus, S., Jønck, S., Pittelkow, M., Dierckx, A., Karpkird, T., Albinsson, B. & Wilhelmsson, L. M. (2013). Photochem. Photobiol. Sci. 12, 1416-1422.]). Other pheno­thia­zine derivatives are used in electrochromic devices (Grätzel, 2001[Grätzel, M. (2001). Nature, 409, 575-576.]) and act as donors in dye-sensitized solar cell fabrication (Marszalek et al., 2012[Marszalek, M., Nagane, S., Ichake, A., Humphry-Baker, R., Paul, V., Zakeeruddin, S. M. & Grätzel, M. (2012). J. Mater. Chem. 22, 889-894.]).

In the title compound, the pheno­thia­zine moiety has a non-planar butterfly structure (Fig. 1[link]). The central six-membered ring adopts a boat conformation [QT = 0.5994 (16) Å, θ= 96.86 (18), φ= 180.7 (2)°]. The dihedral angle between the two outer aromatic rings of the pheno­thia­zine unit is 39.53 (10)°. The crystal packing exhibits a ππ inter­action with a centroid-centroid distance of 3.6871 (12) Å between the benzene rings (C1–C6) of neighbouring mol­ecules. The crystal packing is shown in Fig. 2[link].

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labeling. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as small sphere of arbitrary radius.
[Figure 2]
Figure 2
The packing of the title compound, viewed down the b axis.

Synthesis and crystallization

Pheno­thia­zine (0.400 g, 0.002 mmol, 1 equiv.) was dissolved in DMF (5 ml). Sodium hydride (0.0964 g, 0.002 mmol, 2 equiv.) was added to the reaction mixture at 273 K within 15 min and stirred for 30 min at 273 K. Iodo­methane (0.250 ml, 0.002 mmol, 2 equiv) was added slowly at 273 K and stirred for 2–3 h at room temperature. The completion of the reaction was monitored by TLC. The reaction mass was poured in ice and stirred, filtered and dried. The product was purified by column chromatography using silica gel 100–200 mesh and ethyl acetate: hexane (3:97) as eluent system. The crude product was recrystallized from a mixed solvent of DMF and DCM, yielding green block-shaped crystals.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula C13H11NS
Mr 213.29
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 11.6245 (7), 6.9130 (4), 13.7792 (10)
β (°) 106.591 (2)
V3) 1061.20 (12)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.27
Crystal size (mm) 0.30 × 0.25 × 0.20
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.691, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 10676, 1868, 1567
Rint 0.018
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.097, 1.05
No. of reflections 1868
No. of parameters 137
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.16, −0.21
Computer programs: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

10-Methyl-10H-phenothiazine top
Crystal data top
C13H11NSF(000) = 448
Mr = 213.29Dx = 1.335 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.6245 (7) ÅCell parameters from 1567 reflections
b = 6.9130 (4) Åθ = 3.1–29.4°
c = 13.7792 (10) ŵ = 0.27 mm1
β = 106.591 (2)°T = 296 K
V = 1061.20 (12) Å3Block, green
Z = 40.30 × 0.25 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1567 reflections with I > 2σ(I)
Bruker axs kappa axes2 CCD Diffractometer scansRint = 0.018
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
θmax = 25.0°, θmin = 3.1°
Tmin = 0.691, Tmax = 0.746h = 1313
10676 measured reflectionsk = 88
1868 independent reflectionsl = 1416
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0378P)2 + 0.6758P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
1868 reflectionsΔρmax = 0.16 e Å3
137 parametersΔρmin = 0.21 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.86050 (5)0.40501 (9)0.04641 (4)0.0510 (2)
N10.73700 (14)0.7457 (2)0.09898 (12)0.0424 (4)
C60.71525 (17)0.4834 (3)0.02138 (14)0.0386 (4)
C70.85448 (15)0.4638 (3)0.16918 (14)0.0377 (4)
C20.55714 (17)0.7158 (3)0.04584 (15)0.0435 (5)
H20.5250070.8269490.0258240.052*
C120.79493 (15)0.6314 (3)0.18380 (14)0.0375 (4)
C10.66956 (16)0.6503 (3)0.01080 (14)0.0363 (4)
C50.64954 (19)0.3852 (3)0.10654 (15)0.0482 (5)
H50.6802260.2728010.1266920.058*
C30.49300 (19)0.6178 (3)0.13119 (15)0.0487 (5)
H30.4181670.6638060.1682280.058*
C110.79623 (18)0.6807 (3)0.28215 (15)0.0495 (5)
H110.7543410.7889760.2933890.059*
C40.5380 (2)0.4536 (4)0.16213 (15)0.0523 (5)
H40.4941810.3884430.2199240.063*
C80.91483 (17)0.3503 (3)0.25088 (16)0.0480 (5)
H80.9525630.2369930.2401760.058*
C90.9189 (2)0.4055 (4)0.34792 (17)0.0581 (6)
H90.9617800.3319610.4028830.070*
C100.8596 (2)0.5690 (4)0.36327 (17)0.0596 (6)
H100.8620470.6052230.4288200.072*
C130.7003 (2)0.9396 (3)0.1182 (2)0.0638 (7)
H13A0.6838001.0144740.0570680.096*
H13B0.7636161.0000180.1697130.096*
H13C0.6293680.9323210.1404360.096*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0417 (3)0.0638 (4)0.0492 (3)0.0133 (2)0.0158 (2)0.0065 (3)
N10.0440 (9)0.0328 (8)0.0465 (10)0.0017 (7)0.0065 (7)0.0023 (7)
C60.0394 (10)0.0458 (11)0.0346 (10)0.0009 (8)0.0171 (8)0.0021 (8)
C70.0278 (9)0.0429 (11)0.0414 (10)0.0012 (8)0.0085 (8)0.0006 (8)
C20.0444 (11)0.0406 (11)0.0446 (11)0.0053 (9)0.0113 (9)0.0091 (9)
C120.0288 (9)0.0412 (10)0.0403 (10)0.0038 (8)0.0067 (8)0.0030 (8)
C10.0396 (10)0.0358 (10)0.0356 (10)0.0015 (8)0.0142 (8)0.0051 (8)
C50.0557 (13)0.0537 (13)0.0388 (11)0.0004 (10)0.0193 (9)0.0086 (9)
C30.0438 (11)0.0613 (14)0.0380 (11)0.0014 (10)0.0070 (9)0.0113 (10)
C110.0401 (11)0.0613 (13)0.0452 (12)0.0002 (10)0.0095 (9)0.0126 (10)
C40.0534 (13)0.0681 (15)0.0334 (11)0.0090 (11)0.0094 (9)0.0032 (10)
C80.0348 (10)0.0490 (12)0.0552 (13)0.0011 (9)0.0048 (9)0.0060 (10)
C90.0428 (12)0.0780 (17)0.0464 (13)0.0064 (11)0.0015 (10)0.0167 (12)
C100.0467 (12)0.0927 (19)0.0372 (11)0.0097 (13)0.0086 (9)0.0066 (12)
C130.0721 (16)0.0369 (12)0.0734 (16)0.0045 (11)0.0061 (13)0.0066 (11)
Geometric parameters (Å, º) top
S1—C71.760 (2)C5—H50.9300
S1—C61.7652 (19)C3—C41.368 (3)
N1—C11.408 (2)C3—H30.9300
N1—C121.412 (2)C11—C101.385 (3)
N1—C131.454 (3)C11—H110.9300
C6—C51.382 (3)C4—H40.9300
C6—C11.395 (3)C8—C91.378 (3)
C7—C81.387 (3)C8—H80.9300
C7—C121.394 (3)C9—C101.371 (4)
C2—C31.377 (3)C9—H90.9300
C2—C11.393 (3)C10—H100.9300
C2—H20.9300C13—H13A0.9600
C12—C111.393 (3)C13—H13B0.9600
C5—C41.387 (3)C13—H13C0.9600
C7—S1—C698.23 (8)C4—C3—H3119.6
C1—N1—C12117.96 (15)C2—C3—H3119.6
C1—N1—C13117.97 (17)C10—C11—C12120.3 (2)
C12—N1—C13117.42 (17)C10—C11—H11119.9
C5—C6—C1120.53 (18)C12—C11—H11119.9
C5—C6—S1120.80 (16)C3—C4—C5119.4 (2)
C1—C6—S1118.64 (14)C3—C4—H4120.3
C8—C7—C12120.65 (19)C5—C4—H4120.3
C8—C7—S1119.99 (16)C9—C8—C7120.0 (2)
C12—C7—S1119.23 (14)C9—C8—H8120.0
C3—C2—C1120.74 (19)C7—C8—H8120.0
C3—C2—H2119.6C10—C9—C8119.9 (2)
C1—C2—H2119.6C10—C9—H9120.1
C11—C12—C7118.41 (18)C8—C9—H9120.1
C11—C12—N1122.60 (18)C9—C10—C11120.7 (2)
C7—C12—N1118.99 (17)C9—C10—H10119.7
C2—C1—C6118.19 (18)C11—C10—H10119.7
C2—C1—N1122.26 (17)N1—C13—H13A109.5
C6—C1—N1119.55 (16)N1—C13—H13B109.5
C6—C5—C4120.3 (2)H13A—C13—H13B109.5
C6—C5—H5119.9N1—C13—H13C109.5
C4—C5—H5119.9H13A—C13—H13C109.5
C4—C3—C2120.8 (2)H13B—C13—H13C109.5
C7—S1—C6—C5144.50 (17)S1—C6—C1—N13.4 (2)
C7—S1—C6—C137.60 (17)C12—N1—C1—C2136.84 (18)
C6—S1—C7—C8146.79 (16)C13—N1—C1—C213.9 (3)
C6—S1—C7—C1237.18 (16)C12—N1—C1—C642.6 (2)
C8—C7—C12—C110.8 (3)C13—N1—C1—C6166.72 (19)
S1—C7—C12—C11176.84 (14)C1—C6—C5—C41.1 (3)
C8—C7—C12—N1178.45 (17)S1—C6—C5—C4176.76 (16)
S1—C7—C12—N12.4 (2)C1—C2—C3—C40.2 (3)
C1—N1—C12—C11137.67 (19)C7—C12—C11—C102.6 (3)
C13—N1—C12—C1113.2 (3)N1—C12—C11—C10176.63 (19)
C1—N1—C12—C743.1 (2)C2—C3—C4—C50.1 (3)
C13—N1—C12—C7166.04 (18)C6—C5—C4—C30.8 (3)
C3—C2—C1—C60.1 (3)C12—C7—C8—C91.6 (3)
C3—C2—C1—N1179.31 (18)S1—C7—C8—C9174.34 (16)
C5—C6—C1—C20.8 (3)C7—C8—C9—C102.3 (3)
S1—C6—C1—C2177.16 (14)C8—C9—C10—C110.5 (3)
C5—C6—C1—N1178.68 (18)C12—C11—C10—C92.0 (3)
 

Acknowledgements

The authors thank the single-crystal XRD facility, SAIF IIT Madras, Chennai, for the data collection.

References

First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGrätzel, M. (2001). Nature, 409, 575–576.  Google Scholar
First citationHe, C. X., Meng, H., Zhang, X., Cui, H. Q. & Yin, D. L. (2015). Chin. Chem. Lett. 26, 951–954.  Google Scholar
First citationMarszalek, M., Nagane, S., Ichake, A., Humphry-Baker, R., Paul, V., Zakeeruddin, S. M. & Grätzel, M. (2012). J. Mater. Chem. 22, 889–894.  Google Scholar
First citationPreus, S., Jønck, S., Pittelkow, M., Dierckx, A., Karpkird, T., Albinsson, B. & Wilhelmsson, L. M. (2013). Photochem. Photobiol. Sci. 12, 1416–1422.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStanković, D., Dimitrijević, T., Kuzmanović, D., Krstić, M. P. & Petković, B. B. (2015). RSC Adv. 5, 107058–107063.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds