organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

N-(Pyrazin-2-yl)adamantane-1-carboxamide

aFaculty of Chemistry, University of Opole, Oleska 48, 45-052 Opole, Poland, and bFaculty of Chemical Technology and Engineering, University of Technology and Life Sciences, Seminaryjna 3, 85-326 Bydgoszcz, Poland
*Correspondence e-mail: bartosz.zarychta@uni.opole.pl

Edited by M. Bolte, Goethe-Universität Frankfurt Germany (Received 2 August 2016; accepted 4 August 2016; online 9 August 2016)

Mol­ecules of the title compound, C15H19N3O, are composed of an adamantine unit and a pyrazine ring connected to each other through an amide bond. The H—N—C=O moiety is close to planar [C—N—C—O and C—N—C—C torsion angles of 4.7 (2) and −173.8 (1)°, respectively]. The N3—C5 bond has partial double-bond character [1.370 (1) Å]. The geometries of the pyrazine ring and the adamantane substituent are normal and in good agreement with closely related structures. In the crystal, mol­ecules are connected by N—H⋯O hydrogen bonds, forming zigzag chains in the [001] direction and are arranged in a herringbone fashion.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Adamantane compounds have garnered considerable inter­est from the pharmacological community owning to their anti­viral activity (e.g. Shchelkanov et al., 2014[Shchelkanov, M. Yu., Shibnev, V. A., Finogenova, I. T., Fediakina, T. M., Garaev, T. M., Markova, N. V. & Kirillov, I. M. (2014). Vopr. Virusol. 59(2), 37-40.]). In the mol­ecular structure presented herein, the adamantane component and its meaningful steric hindrance represents a geometric restriction for N—H⋯O=C hydrogen-bond formation. These inter­actions are the most inter­esting hydrogen bonding in biochemistry, as they stabilize the secondary structure of peptides (Pauling et al., 1951[Pauling, L., Corey, R. B. & Branson, H. R. (1951). Proc. Natl Acad. Sci. USA, 37, 205-211.]). From the structural chemistry point of view, the strength and geometry of the inter­action can be easily modified by use of bulky substituents (like adamantane) of the carb­oxy­amide unit (Ośmiałowski et al., 2010[Ośmiałowski, B., Kolehmainen, E., Dobosz, R., Gawinecki, R., Kauppinen, R., Valkonen, A., Koivukorpi, J. & Rissanen, K. (2010). J. Phys. Chem. A, 114, 10421-10426.], 2013[Ośmiałowski, B., Kolehmainen, E., Ejsmont, K., Ikonen, S., Valkonen, A., Rissanen, K. & Nonappa (2013). J. Mol. Struct. 1054-1055, 157-163.]).

In the asymmetric unit of the title compound (Fig. 1[link]), there is one independent mol­ecule. The mol­ecule is composed of an adamantane unit and a pyrazine ring connected to each other through the amide bond. The H—N—C=O bond is close to planar, with C1—N3—C5—O1 and C1—N3—C5—C6 torsion angles of 4.7 (2) and −173.8 (1)°, respectively. The N3—C5 [1.370 (1) Å] bond has partial double-bond character and pyramidalization of N3 is not observed. The geometries of the pyrazine ring and the adamantane substituent are typical and the C—C and C—N bond lengths are normal and in good agreement with the average literature values (Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]) and with those of closely related structures (e.g. Cati & Stoeckli-Evans, 2014[Cati, D. S. & Stoeckli-Evans, H. (2014). Acta Cryst. E70, 18-22.]; Wang & Stoeckli-Evans, 2016[Wang, Y. & Stoeckli-Evans, H. (2016). IUCrData, 1, x152174.]; SiMa, 2009[SiMa, W. (2009). Acta Cryst. E65, o2452.]; Zheng & Wang, 2009[Zheng, W.-N. & Wang, B. (2009). Acta Cryst. E65, o2769.]). In the crystal, mol­ecules of the title compound form zigzag chains in the [001] direction through an N3—H3A⋯O1i hydrogen bond [symmetry code: (i) x, −y, z − [{1\over 2}]] (Table 1[link]). Chains are linked to each other by C3—H3⋯N1ii inter­actions [symmetry code: (ii) −x + [{1\over 2}], y + [{1\over 2}], −z + [{1\over 2}]], arranging the mol­ecules in a herringbone packing arrangement (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O1i 0.86 2.22 3.0732 (13) 174
C3—H3⋯N1ii 0.93 2.64 3.5179 (16) 157
C4—H4⋯O1 0.93 2.27 2.8612 (14) 121
Symmetry codes: (i) [x, -y, z-{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
The crystal packing of the title compound, viewed along the c axis.

Synthesis and crystallization

N-(Pyrazin-2-yl)adamantane-1-carboxamide was obtained by reaction of amino­pyrazine with 1-adamantanecarbonyl chloride (equimolar amounts added dropwise) in di­chloro­methane as a solvent containing tri­ethyl­amine (1.2 molar equivalent). The reaction was performed at room temperature for 24 h. The solvent was then removed under reduced pressure and the residual was treated with saturated Na2CO3 solution. The water layer was extracted with chloro­form and the organic phase was evaporated to dryness. The residual solid was recrystallized from ethanol solution.

Refinement

All H atoms were found in a difference map but set to idealized positions and treated as riding, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms, C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for Csp3 H atoms, and N—H = 0.86 Å and Uiso(H) = 1.2Ueq(N). Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C15H19N3O
Mr 257.34
Crystal system, space group Monoclinic, C2/c
Temperature (K) 100
a, b, c (Å) 27.3649 (9), 9.4960 (3), 10.0932 (3)
β (°) 97.371 (3)
V3) 2601.11 (14)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.35 × 0.20 × 0.15
 
Data collection
Diffractometer Oxford Diffraction Xcalibur
No. of measured, independent and observed [I > 2σ(I)] reflections 7922, 2288, 1872
Rint 0.017
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.082, 1.06
No. of reflections 2288
No. of parameters 172
H-atom treatment H-atom parameters not refined
Δρmax, Δρmin (e Å−3) 0.23, −0.20
Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), and XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2015).

N-(Pyrazin-2-yl)adamantane-1-carboxamide top
Crystal data top
C15H19N3OF(000) = 1104
Mr = 257.34Dx = 1.314 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 27.3649 (9) ÅCell parameters from 7922 reflections
b = 9.4960 (3) Åθ = 3.0–25.2°
c = 10.0932 (3) ŵ = 0.09 mm1
β = 97.371 (3)°T = 100 K
V = 2601.11 (14) Å3Irregular, colourless
Z = 80.35 × 0.20 × 0.15 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer
1872 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.017
Graphite monochromatorθmax = 25.0°, θmin = 3.0°
Detector resolution: 7.07 pixels mm-1h = 3232
ω scank = 1111
7922 measured reflectionsl = 712
2288 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H-atom parameters not refined
S = 1.06 w = 1/[σ2(Fo2) + (0.0502P)2 + 0.2928P]
where P = (Fo2 + 2Fc2)/3
2288 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.20 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.35335 (3)0.04607 (8)0.64164 (8)0.0171 (2)
N10.29623 (4)0.23922 (11)0.28328 (9)0.0166 (2)
N20.28733 (4)0.41834 (11)0.49820 (10)0.0192 (3)
N30.33971 (4)0.07518 (10)0.41681 (9)0.0148 (2)
H3A0.34330.03540.34210.018*
C10.31491 (4)0.20496 (12)0.40801 (11)0.0134 (3)
C20.27321 (4)0.36365 (13)0.26772 (12)0.0183 (3)
H20.25990.39150.18230.022*
C30.26850 (4)0.45175 (13)0.37355 (12)0.0189 (3)
H30.25180.53660.35790.023*
C40.31065 (4)0.29484 (12)0.51542 (12)0.0162 (3)
H40.32430.26810.60080.019*
C50.35891 (4)0.00418 (12)0.52975 (11)0.0127 (3)
C60.38861 (4)0.12766 (12)0.50667 (11)0.0125 (3)
C70.40850 (4)0.19418 (12)0.64151 (11)0.0144 (3)
H7A0.42860.12610.69550.017*
H7B0.38120.22040.68890.017*
C80.43941 (4)0.32477 (12)0.62024 (12)0.0159 (3)
H80.45160.36610.70710.019*
C90.40736 (5)0.43301 (13)0.53643 (12)0.0185 (3)
H9A0.42660.51660.52370.022*
H9B0.37980.46030.58240.022*
C100.38834 (4)0.36779 (13)0.40072 (12)0.0172 (3)
H100.36820.43700.34630.021*
C110.35678 (4)0.23827 (12)0.42266 (11)0.0151 (3)
H11A0.32930.26590.46870.018*
H11B0.34370.19800.33710.018*
C120.43293 (4)0.08611 (12)0.43399 (12)0.0142 (3)
H12A0.42110.04450.34800.017*
H12B0.45300.01670.48650.017*
C130.46409 (4)0.21676 (13)0.41374 (12)0.0167 (3)
H130.49210.18970.36760.020*
C140.48310 (4)0.28214 (13)0.54869 (12)0.0173 (3)
H14A0.50350.21470.60270.021*
H14B0.50300.36420.53560.021*
C150.43197 (4)0.32405 (13)0.32845 (12)0.0186 (3)
H15A0.41990.28270.24260.022*
H15B0.45150.40630.31290.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0218 (5)0.0182 (5)0.0112 (4)0.0040 (4)0.0026 (3)0.0009 (3)
N10.0157 (5)0.0181 (6)0.0158 (5)0.0006 (4)0.0013 (4)0.0036 (4)
N20.0182 (6)0.0149 (6)0.0245 (6)0.0007 (4)0.0031 (5)0.0003 (4)
N30.0198 (5)0.0142 (5)0.0104 (5)0.0040 (4)0.0018 (4)0.0011 (4)
C10.0113 (6)0.0131 (6)0.0161 (6)0.0008 (5)0.0025 (5)0.0019 (5)
C20.0158 (6)0.0186 (7)0.0200 (7)0.0018 (5)0.0000 (5)0.0063 (5)
C30.0149 (6)0.0142 (6)0.0273 (7)0.0009 (5)0.0019 (5)0.0035 (5)
C40.0158 (6)0.0155 (6)0.0170 (6)0.0002 (5)0.0008 (5)0.0008 (5)
C50.0118 (6)0.0132 (6)0.0131 (6)0.0026 (5)0.0009 (5)0.0001 (5)
C60.0135 (6)0.0123 (6)0.0118 (6)0.0012 (5)0.0021 (5)0.0000 (5)
C70.0170 (6)0.0139 (6)0.0122 (6)0.0006 (5)0.0018 (5)0.0004 (5)
C80.0182 (6)0.0145 (7)0.0146 (6)0.0022 (5)0.0003 (5)0.0024 (5)
C90.0193 (6)0.0127 (6)0.0238 (7)0.0021 (5)0.0042 (5)0.0001 (5)
C100.0185 (7)0.0131 (7)0.0193 (6)0.0021 (5)0.0002 (5)0.0040 (5)
C110.0153 (6)0.0152 (6)0.0144 (6)0.0013 (5)0.0007 (5)0.0003 (5)
C120.0152 (6)0.0136 (6)0.0140 (6)0.0013 (5)0.0024 (5)0.0013 (5)
C130.0149 (6)0.0183 (7)0.0177 (6)0.0002 (5)0.0058 (5)0.0005 (5)
C140.0160 (6)0.0146 (6)0.0211 (6)0.0022 (5)0.0012 (5)0.0020 (5)
C150.0227 (7)0.0169 (6)0.0164 (6)0.0041 (5)0.0031 (5)0.0038 (5)
Geometric parameters (Å, º) top
O1—C51.2252 (14)C8—C91.5332 (16)
N1—C11.3368 (14)C8—H80.9800
N1—C21.3387 (16)C9—C101.5322 (16)
N2—C31.3353 (16)C9—H9A0.9700
N2—C41.3358 (15)C9—H9B0.9700
N3—C51.3698 (14)C10—C151.5340 (17)
N3—C11.4042 (15)C10—C111.5351 (17)
N3—H3A0.8600C10—H100.9800
C1—C41.3963 (16)C11—H11A0.9700
C2—C31.3758 (18)C11—H11B0.9700
C2—H20.9300C12—C131.5339 (16)
C3—H30.9300C12—H12A0.9700
C4—H40.9300C12—H12B0.9700
C5—C61.5267 (16)C13—C141.5263 (16)
C6—C71.5354 (15)C13—C151.5354 (16)
C6—C111.5464 (16)C13—H130.9800
C6—C121.5468 (16)C14—H14A0.9700
C7—C81.5316 (16)C14—H14B0.9700
C7—H7A0.9700C15—H15A0.9700
C7—H7B0.9700C15—H15B0.9700
C8—C141.5286 (17)
C1—N1—C2116.27 (10)C8—C9—H9A109.9
C3—N2—C4116.83 (11)C10—C9—H9B109.9
C5—N3—C1127.97 (10)C8—C9—H9B109.9
C5—N3—H3A116.0H9A—C9—H9B108.3
C1—N3—H3A116.0C9—C10—C15109.80 (9)
N1—C1—C4121.50 (11)C9—C10—C11109.13 (10)
N1—C1—N3113.36 (10)C15—C10—C11109.76 (10)
C4—C1—N3125.11 (11)C9—C10—H10109.4
N1—C2—C3122.36 (11)C15—C10—H10109.4
N1—C2—H2118.8C11—C10—H10109.4
C3—C2—H2118.8C10—C11—C6109.61 (9)
N2—C3—C2121.59 (12)C10—C11—H11A109.7
N2—C3—H3119.2C6—C11—H11A109.7
C2—C3—H3119.2C10—C11—H11B109.7
N2—C4—C1121.45 (11)C6—C11—H11B109.7
N2—C4—H4119.3H11A—C11—H11B108.2
C1—C4—H4119.3C13—C12—C6109.87 (9)
O1—C5—N3121.84 (11)C13—C12—H12A109.7
O1—C5—C6122.58 (10)C6—C12—H12A109.7
N3—C5—C6115.57 (10)C13—C12—H12B109.7
C5—C6—C7109.71 (9)C6—C12—H12B109.7
C5—C6—C11111.55 (9)H12A—C12—H12B108.2
C7—C6—C11108.50 (9)C14—C13—C12109.99 (10)
C5—C6—C12109.16 (9)C14—C13—C15109.60 (10)
C7—C6—C12108.36 (9)C12—C13—C15108.87 (9)
C11—C6—C12109.50 (9)C14—C13—H13109.5
C8—C7—C6110.38 (10)C12—C13—H13109.5
C8—C7—H7A109.6C15—C13—H13109.5
C6—C7—H7A109.6C13—C14—C8109.36 (9)
C8—C7—H7B109.6C13—C14—H14A109.8
C6—C7—H7B109.6C8—C14—H14A109.8
H7A—C7—H7B108.1C13—C14—H14B109.8
C14—C8—C7109.35 (10)C8—C14—H14B109.8
C14—C8—C9110.09 (10)H14A—C14—H14B108.3
C7—C8—C9109.46 (10)C10—C15—C13109.73 (9)
C14—C8—H8109.3C10—C15—H15A109.7
C7—C8—H8109.3C13—C15—H15A109.7
C9—C8—H8109.3C10—C15—H15B109.7
C10—C9—C8109.08 (10)C13—C15—H15B109.7
C10—C9—H9A109.9H15A—C15—H15B108.2
C2—N1—C1—C40.24 (16)C14—C8—C9—C1059.90 (12)
C2—N1—C1—N3178.33 (10)C7—C8—C9—C1060.32 (12)
C5—N3—C1—N1173.52 (10)C8—C9—C10—C1559.24 (13)
C5—N3—C1—C48.47 (19)C8—C9—C10—C1161.11 (12)
C1—N1—C2—C30.46 (17)C9—C10—C11—C661.22 (12)
C4—N2—C3—C20.49 (17)C15—C10—C11—C659.15 (12)
N1—C2—C3—N20.86 (19)C5—C6—C11—C10179.30 (9)
C3—N2—C4—C10.20 (17)C7—C6—C11—C1059.73 (12)
N1—C1—C4—N20.59 (18)C12—C6—C11—C1058.36 (12)
N3—C1—C4—N2178.45 (11)C5—C6—C12—C13178.29 (9)
C1—N3—C5—O14.70 (18)C7—C6—C12—C1358.86 (12)
C1—N3—C5—C6173.80 (10)C11—C6—C12—C1359.32 (12)
O1—C5—C6—C70.46 (15)C6—C12—C13—C1459.77 (12)
N3—C5—C6—C7178.96 (9)C6—C12—C13—C1560.33 (12)
O1—C5—C6—C11120.72 (12)C12—C13—C14—C859.94 (12)
N3—C5—C6—C1160.79 (13)C15—C13—C14—C859.71 (12)
O1—C5—C6—C12118.14 (12)C7—C8—C14—C1359.99 (12)
N3—C5—C6—C1260.36 (12)C9—C8—C14—C1360.31 (12)
C5—C6—C7—C8178.69 (9)C9—C10—C15—C1359.34 (13)
C11—C6—C7—C859.21 (12)C11—C10—C15—C1360.63 (12)
C12—C6—C7—C859.60 (12)C14—C13—C15—C1059.45 (12)
C6—C7—C8—C1460.67 (12)C12—C13—C15—C1060.89 (12)
C6—C7—C8—C960.01 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O1i0.862.223.0732 (13)174
C3—H3···N1ii0.932.643.5179 (16)157
C4—H4···O10.932.272.8612 (14)121
Symmetry codes: (i) x, y, z1/2; (ii) x+1/2, y+1/2, z+1/2.
 

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationCati, D. S. & Stoeckli-Evans, H. (2014). Acta Cryst. E70, 18–22.  CSD CrossRef IUCr Journals Google Scholar
First citationOśmiałowski, B., Kolehmainen, E., Dobosz, R., Gawinecki, R., Kauppinen, R., Valkonen, A., Koivukorpi, J. & Rissanen, K. (2010). J. Phys. Chem. A, 114, 10421–10426.  PubMed Google Scholar
First citationOśmiałowski, B., Kolehmainen, E., Ejsmont, K., Ikonen, S., Valkonen, A., Rissanen, K. & Nonappa (2013). J. Mol. Struct. 1054–1055, 157–163.  Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationPauling, L., Corey, R. B. & Branson, H. R. (1951). Proc. Natl Acad. Sci. USA, 37, 205–211.  CrossRef PubMed CAS Web of Science Google Scholar
First citationShchelkanov, M. Yu., Shibnev, V. A., Finogenova, I. T., Fediakina, T. M., Garaev, T. M., Markova, N. V. & Kirillov, I. M. (2014). Vopr. Virusol. 59(2), 37–40.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiMa, W. (2009). Acta Cryst. E65, o2452.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, Y. & Stoeckli-Evans, H. (2016). IUCrData, 1, x152174.  Google Scholar
First citationZheng, W.-N. & Wang, B. (2009). Acta Cryst. E65, o2769.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds