organic compounds
N-(Pyrazin-2-yl)adamantane-1-carboxamide
aFaculty of Chemistry, University of Opole, Oleska 48, 45-052 Opole, Poland, and bFaculty of Chemical Technology and Engineering, University of Technology and Life Sciences, Seminaryjna 3, 85-326 Bydgoszcz, Poland
*Correspondence e-mail: bartosz.zarychta@uni.opole.pl
Molecules of the title compound, C15H19N3O, are composed of an adamantine unit and a pyrazine ring connected to each other through an amide bond. The H—N—C=O moiety is close to planar [C—N—C—O and C—N—C—C torsion angles of 4.7 (2) and −173.8 (1)°, respectively]. The N3—C5 bond has partial double-bond character [1.370 (1) Å]. The geometries of the pyrazine ring and the adamantane substituent are normal and in good agreement with closely related structures. In the crystal, molecules are connected by N—H⋯O hydrogen bonds, forming zigzag chains in the [001] direction and are arranged in a herringbone fashion.
Keywords: crystal structure; adamantane; antiviral activity.
CCDC reference: 1497616
Structure description
Adamantane compounds have garnered considerable interest from the pharmacological community owning to their antiviral activity (e.g. Shchelkanov et al., 2014). In the molecular structure presented herein, the adamantane component and its meaningful represents a geometric restriction for N—H⋯O=C hydrogen-bond formation. These interactions are the most interesting hydrogen bonding in biochemistry, as they stabilize the secondary structure of (Pauling et al., 1951). From the structural chemistry point of view, the strength and geometry of the interaction can be easily modified by use of bulky substituents (like adamantane) of the carboxyamide unit (Ośmiałowski et al., 2010, 2013).
In the ), there is one independent molecule. The molecule is composed of an adamantane unit and a pyrazine ring connected to each other through the amide bond. The H—N—C=O bond is close to planar, with C1—N3—C5—O1 and C1—N3—C5—C6 torsion angles of 4.7 (2) and −173.8 (1)°, respectively. The N3—C5 [1.370 (1) Å] bond has partial double-bond character and pyramidalization of N3 is not observed. The geometries of the pyrazine ring and the adamantane substituent are typical and the C—C and C—N bond lengths are normal and in good agreement with the average literature values (Allen, 2002) and with those of closely related structures (e.g. Cati & Stoeckli-Evans, 2014; Wang & Stoeckli-Evans, 2016; SiMa, 2009; Zheng & Wang, 2009). In the crystal, molecules of the title compound form zigzag chains in the [001] direction through an N3—H3A⋯O1i hydrogen bond [symmetry code: (i) x, −y, z − ] (Table 1). Chains are linked to each other by C3—H3⋯N1ii interactions [symmetry code: (ii) −x + , y + , −z + ], arranging the molecules in a herringbone packing arrangement (Fig. 2).
of the title compound (Fig. 1Synthesis and crystallization
N-(Pyrazin-2-yl)adamantane-1-carboxamide was obtained by reaction of aminopyrazine with 1-adamantanecarbonyl chloride (equimolar amounts added dropwise) in dichloromethane as a solvent containing triethylamine (1.2 molar equivalent). The reaction was performed at room temperature for 24 h. The solvent was then removed under reduced pressure and the residual was treated with saturated Na2CO3 solution. The water layer was extracted with chloroform and the organic phase was evaporated to dryness. The residual solid was recrystallized from ethanol solution.
Refinement
All H atoms were found in a difference map but set to idealized positions and treated as riding, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms, C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for Csp3 H atoms, and N—H = 0.86 Å and Uiso(H) = 1.2Ueq(N). Crystal data, data collection and structure details are summarized in Table 2.
Structural data
CCDC reference: 1497616
10.1107/S241431461601258X/bt4022sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S241431461601258X/bt4022Isup2.hkl
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell
CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2015).C15H19N3O | F(000) = 1104 |
Mr = 257.34 | Dx = 1.314 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 27.3649 (9) Å | Cell parameters from 7922 reflections |
b = 9.4960 (3) Å | θ = 3.0–25.2° |
c = 10.0932 (3) Å | µ = 0.09 mm−1 |
β = 97.371 (3)° | T = 100 K |
V = 2601.11 (14) Å3 | Irregular, colourless |
Z = 8 | 0.35 × 0.20 × 0.15 mm |
Oxford Diffraction Xcalibur diffractometer | 1872 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.017 |
Graphite monochromator | θmax = 25.0°, θmin = 3.0° |
Detector resolution: 7.07 pixels mm-1 | h = −32→32 |
ω scan | k = −11→11 |
7922 measured reflections | l = −7→12 |
2288 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.032 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.082 | H-atom parameters not refined |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0502P)2 + 0.2928P] where P = (Fo2 + 2Fc2)/3 |
2288 reflections | (Δ/σ)max < 0.001 |
172 parameters | Δρmax = 0.23 e Å−3 |
0 restraints | Δρmin = −0.20 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.35335 (3) | 0.04607 (8) | 0.64164 (8) | 0.0171 (2) | |
N1 | 0.29623 (4) | 0.23922 (11) | 0.28328 (9) | 0.0166 (2) | |
N2 | 0.28733 (4) | 0.41834 (11) | 0.49820 (10) | 0.0192 (3) | |
N3 | 0.33971 (4) | 0.07518 (10) | 0.41681 (9) | 0.0148 (2) | |
H3A | 0.3433 | 0.0354 | 0.3421 | 0.018* | |
C1 | 0.31491 (4) | 0.20496 (12) | 0.40801 (11) | 0.0134 (3) | |
C2 | 0.27321 (4) | 0.36365 (13) | 0.26772 (12) | 0.0183 (3) | |
H2 | 0.2599 | 0.3915 | 0.1823 | 0.022* | |
C3 | 0.26850 (4) | 0.45175 (13) | 0.37355 (12) | 0.0189 (3) | |
H3 | 0.2518 | 0.5366 | 0.3579 | 0.023* | |
C4 | 0.31065 (4) | 0.29484 (12) | 0.51542 (12) | 0.0162 (3) | |
H4 | 0.3243 | 0.2681 | 0.6008 | 0.019* | |
C5 | 0.35891 (4) | 0.00418 (12) | 0.52975 (11) | 0.0127 (3) | |
C6 | 0.38861 (4) | −0.12766 (12) | 0.50667 (11) | 0.0125 (3) | |
C7 | 0.40850 (4) | −0.19418 (12) | 0.64151 (11) | 0.0144 (3) | |
H7A | 0.4286 | −0.1261 | 0.6955 | 0.017* | |
H7B | 0.3812 | −0.2204 | 0.6889 | 0.017* | |
C8 | 0.43941 (4) | −0.32477 (12) | 0.62024 (12) | 0.0159 (3) | |
H8 | 0.4516 | −0.3661 | 0.7071 | 0.019* | |
C9 | 0.40736 (5) | −0.43301 (13) | 0.53643 (12) | 0.0185 (3) | |
H9A | 0.4266 | −0.5166 | 0.5237 | 0.022* | |
H9B | 0.3798 | −0.4603 | 0.5824 | 0.022* | |
C10 | 0.38834 (4) | −0.36779 (13) | 0.40072 (12) | 0.0172 (3) | |
H10 | 0.3682 | −0.4370 | 0.3463 | 0.021* | |
C11 | 0.35678 (4) | −0.23827 (12) | 0.42266 (11) | 0.0151 (3) | |
H11A | 0.3293 | −0.2659 | 0.4687 | 0.018* | |
H11B | 0.3437 | −0.1980 | 0.3371 | 0.018* | |
C12 | 0.43293 (4) | −0.08611 (12) | 0.43399 (12) | 0.0142 (3) | |
H12A | 0.4211 | −0.0445 | 0.3480 | 0.017* | |
H12B | 0.4530 | −0.0167 | 0.4865 | 0.017* | |
C13 | 0.46409 (4) | −0.21676 (13) | 0.41374 (12) | 0.0167 (3) | |
H13 | 0.4921 | −0.1897 | 0.3676 | 0.020* | |
C14 | 0.48310 (4) | −0.28214 (13) | 0.54869 (12) | 0.0173 (3) | |
H14A | 0.5035 | −0.2147 | 0.6027 | 0.021* | |
H14B | 0.5030 | −0.3642 | 0.5356 | 0.021* | |
C15 | 0.43197 (4) | −0.32405 (13) | 0.32845 (12) | 0.0186 (3) | |
H15A | 0.4199 | −0.2827 | 0.2426 | 0.022* | |
H15B | 0.4515 | −0.4063 | 0.3129 | 0.022* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0218 (5) | 0.0182 (5) | 0.0112 (4) | 0.0040 (4) | 0.0026 (3) | −0.0009 (3) |
N1 | 0.0157 (5) | 0.0181 (6) | 0.0158 (5) | 0.0006 (4) | 0.0013 (4) | 0.0036 (4) |
N2 | 0.0182 (6) | 0.0149 (6) | 0.0245 (6) | 0.0007 (4) | 0.0031 (5) | −0.0003 (4) |
N3 | 0.0198 (5) | 0.0142 (5) | 0.0104 (5) | 0.0040 (4) | 0.0018 (4) | −0.0011 (4) |
C1 | 0.0113 (6) | 0.0131 (6) | 0.0161 (6) | −0.0008 (5) | 0.0025 (5) | 0.0019 (5) |
C2 | 0.0158 (6) | 0.0186 (7) | 0.0200 (7) | 0.0018 (5) | 0.0000 (5) | 0.0063 (5) |
C3 | 0.0149 (6) | 0.0142 (6) | 0.0273 (7) | 0.0009 (5) | 0.0019 (5) | 0.0035 (5) |
C4 | 0.0158 (6) | 0.0155 (6) | 0.0170 (6) | 0.0002 (5) | 0.0008 (5) | 0.0008 (5) |
C5 | 0.0118 (6) | 0.0132 (6) | 0.0131 (6) | −0.0026 (5) | 0.0009 (5) | −0.0001 (5) |
C6 | 0.0135 (6) | 0.0123 (6) | 0.0118 (6) | 0.0012 (5) | 0.0021 (5) | 0.0000 (5) |
C7 | 0.0170 (6) | 0.0139 (6) | 0.0122 (6) | 0.0006 (5) | 0.0018 (5) | 0.0004 (5) |
C8 | 0.0182 (6) | 0.0145 (7) | 0.0146 (6) | 0.0022 (5) | 0.0003 (5) | 0.0024 (5) |
C9 | 0.0193 (6) | 0.0127 (6) | 0.0238 (7) | 0.0021 (5) | 0.0042 (5) | 0.0001 (5) |
C10 | 0.0185 (7) | 0.0131 (7) | 0.0193 (6) | −0.0021 (5) | 0.0002 (5) | −0.0040 (5) |
C11 | 0.0153 (6) | 0.0152 (6) | 0.0144 (6) | −0.0013 (5) | 0.0007 (5) | 0.0003 (5) |
C12 | 0.0152 (6) | 0.0136 (6) | 0.0140 (6) | −0.0013 (5) | 0.0024 (5) | 0.0013 (5) |
C13 | 0.0149 (6) | 0.0183 (7) | 0.0177 (6) | 0.0002 (5) | 0.0058 (5) | −0.0005 (5) |
C14 | 0.0160 (6) | 0.0146 (6) | 0.0211 (6) | 0.0022 (5) | 0.0012 (5) | −0.0020 (5) |
C15 | 0.0227 (7) | 0.0169 (6) | 0.0164 (6) | 0.0041 (5) | 0.0031 (5) | −0.0038 (5) |
O1—C5 | 1.2252 (14) | C8—C9 | 1.5332 (16) |
N1—C1 | 1.3368 (14) | C8—H8 | 0.9800 |
N1—C2 | 1.3387 (16) | C9—C10 | 1.5322 (16) |
N2—C3 | 1.3353 (16) | C9—H9A | 0.9700 |
N2—C4 | 1.3358 (15) | C9—H9B | 0.9700 |
N3—C5 | 1.3698 (14) | C10—C15 | 1.5340 (17) |
N3—C1 | 1.4042 (15) | C10—C11 | 1.5351 (17) |
N3—H3A | 0.8600 | C10—H10 | 0.9800 |
C1—C4 | 1.3963 (16) | C11—H11A | 0.9700 |
C2—C3 | 1.3758 (18) | C11—H11B | 0.9700 |
C2—H2 | 0.9300 | C12—C13 | 1.5339 (16) |
C3—H3 | 0.9300 | C12—H12A | 0.9700 |
C4—H4 | 0.9300 | C12—H12B | 0.9700 |
C5—C6 | 1.5267 (16) | C13—C14 | 1.5263 (16) |
C6—C7 | 1.5354 (15) | C13—C15 | 1.5354 (16) |
C6—C11 | 1.5464 (16) | C13—H13 | 0.9800 |
C6—C12 | 1.5468 (16) | C14—H14A | 0.9700 |
C7—C8 | 1.5316 (16) | C14—H14B | 0.9700 |
C7—H7A | 0.9700 | C15—H15A | 0.9700 |
C7—H7B | 0.9700 | C15—H15B | 0.9700 |
C8—C14 | 1.5286 (17) | ||
C1—N1—C2 | 116.27 (10) | C8—C9—H9A | 109.9 |
C3—N2—C4 | 116.83 (11) | C10—C9—H9B | 109.9 |
C5—N3—C1 | 127.97 (10) | C8—C9—H9B | 109.9 |
C5—N3—H3A | 116.0 | H9A—C9—H9B | 108.3 |
C1—N3—H3A | 116.0 | C9—C10—C15 | 109.80 (9) |
N1—C1—C4 | 121.50 (11) | C9—C10—C11 | 109.13 (10) |
N1—C1—N3 | 113.36 (10) | C15—C10—C11 | 109.76 (10) |
C4—C1—N3 | 125.11 (11) | C9—C10—H10 | 109.4 |
N1—C2—C3 | 122.36 (11) | C15—C10—H10 | 109.4 |
N1—C2—H2 | 118.8 | C11—C10—H10 | 109.4 |
C3—C2—H2 | 118.8 | C10—C11—C6 | 109.61 (9) |
N2—C3—C2 | 121.59 (12) | C10—C11—H11A | 109.7 |
N2—C3—H3 | 119.2 | C6—C11—H11A | 109.7 |
C2—C3—H3 | 119.2 | C10—C11—H11B | 109.7 |
N2—C4—C1 | 121.45 (11) | C6—C11—H11B | 109.7 |
N2—C4—H4 | 119.3 | H11A—C11—H11B | 108.2 |
C1—C4—H4 | 119.3 | C13—C12—C6 | 109.87 (9) |
O1—C5—N3 | 121.84 (11) | C13—C12—H12A | 109.7 |
O1—C5—C6 | 122.58 (10) | C6—C12—H12A | 109.7 |
N3—C5—C6 | 115.57 (10) | C13—C12—H12B | 109.7 |
C5—C6—C7 | 109.71 (9) | C6—C12—H12B | 109.7 |
C5—C6—C11 | 111.55 (9) | H12A—C12—H12B | 108.2 |
C7—C6—C11 | 108.50 (9) | C14—C13—C12 | 109.99 (10) |
C5—C6—C12 | 109.16 (9) | C14—C13—C15 | 109.60 (10) |
C7—C6—C12 | 108.36 (9) | C12—C13—C15 | 108.87 (9) |
C11—C6—C12 | 109.50 (9) | C14—C13—H13 | 109.5 |
C8—C7—C6 | 110.38 (10) | C12—C13—H13 | 109.5 |
C8—C7—H7A | 109.6 | C15—C13—H13 | 109.5 |
C6—C7—H7A | 109.6 | C13—C14—C8 | 109.36 (9) |
C8—C7—H7B | 109.6 | C13—C14—H14A | 109.8 |
C6—C7—H7B | 109.6 | C8—C14—H14A | 109.8 |
H7A—C7—H7B | 108.1 | C13—C14—H14B | 109.8 |
C14—C8—C7 | 109.35 (10) | C8—C14—H14B | 109.8 |
C14—C8—C9 | 110.09 (10) | H14A—C14—H14B | 108.3 |
C7—C8—C9 | 109.46 (10) | C10—C15—C13 | 109.73 (9) |
C14—C8—H8 | 109.3 | C10—C15—H15A | 109.7 |
C7—C8—H8 | 109.3 | C13—C15—H15A | 109.7 |
C9—C8—H8 | 109.3 | C10—C15—H15B | 109.7 |
C10—C9—C8 | 109.08 (10) | C13—C15—H15B | 109.7 |
C10—C9—H9A | 109.9 | H15A—C15—H15B | 108.2 |
C2—N1—C1—C4 | −0.24 (16) | C14—C8—C9—C10 | −59.90 (12) |
C2—N1—C1—N3 | −178.33 (10) | C7—C8—C9—C10 | 60.32 (12) |
C5—N3—C1—N1 | −173.52 (10) | C8—C9—C10—C15 | 59.24 (13) |
C5—N3—C1—C4 | 8.47 (19) | C8—C9—C10—C11 | −61.11 (12) |
C1—N1—C2—C3 | −0.46 (17) | C9—C10—C11—C6 | 61.22 (12) |
C4—N2—C3—C2 | −0.49 (17) | C15—C10—C11—C6 | −59.15 (12) |
N1—C2—C3—N2 | 0.86 (19) | C5—C6—C11—C10 | 179.30 (9) |
C3—N2—C4—C1 | −0.20 (17) | C7—C6—C11—C10 | −59.73 (12) |
N1—C1—C4—N2 | 0.59 (18) | C12—C6—C11—C10 | 58.36 (12) |
N3—C1—C4—N2 | 178.45 (11) | C5—C6—C12—C13 | 178.29 (9) |
C1—N3—C5—O1 | 4.70 (18) | C7—C6—C12—C13 | 58.86 (12) |
C1—N3—C5—C6 | −173.80 (10) | C11—C6—C12—C13 | −59.32 (12) |
O1—C5—C6—C7 | 0.46 (15) | C6—C12—C13—C14 | −59.77 (12) |
N3—C5—C6—C7 | 178.96 (9) | C6—C12—C13—C15 | 60.33 (12) |
O1—C5—C6—C11 | 120.72 (12) | C12—C13—C14—C8 | 59.94 (12) |
N3—C5—C6—C11 | −60.79 (13) | C15—C13—C14—C8 | −59.71 (12) |
O1—C5—C6—C12 | −118.14 (12) | C7—C8—C14—C13 | −59.99 (12) |
N3—C5—C6—C12 | 60.36 (12) | C9—C8—C14—C13 | 60.31 (12) |
C5—C6—C7—C8 | −178.69 (9) | C9—C10—C15—C13 | −59.34 (13) |
C11—C6—C7—C8 | 59.21 (12) | C11—C10—C15—C13 | 60.63 (12) |
C12—C6—C7—C8 | −59.60 (12) | C14—C13—C15—C10 | 59.45 (12) |
C6—C7—C8—C14 | 60.67 (12) | C12—C13—C15—C10 | −60.89 (12) |
C6—C7—C8—C9 | −60.01 (12) |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3A···O1i | 0.86 | 2.22 | 3.0732 (13) | 174 |
C3—H3···N1ii | 0.93 | 2.64 | 3.5179 (16) | 157 |
C4—H4···O1 | 0.93 | 2.27 | 2.8612 (14) | 121 |
Symmetry codes: (i) x, −y, z−1/2; (ii) −x+1/2, y+1/2, −z+1/2. |
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Cati, D. S. & Stoeckli-Evans, H. (2014). Acta Cryst. E70, 18–22. CSD CrossRef IUCr Journals Google Scholar
Ośmiałowski, B., Kolehmainen, E., Dobosz, R., Gawinecki, R., Kauppinen, R., Valkonen, A., Koivukorpi, J. & Rissanen, K. (2010). J. Phys. Chem. A, 114, 10421–10426. PubMed Google Scholar
Ośmiałowski, B., Kolehmainen, E., Ejsmont, K., Ikonen, S., Valkonen, A., Rissanen, K. & Nonappa (2013). J. Mol. Struct. 1054–1055, 157–163. Google Scholar
Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England. Google Scholar
Pauling, L., Corey, R. B. & Branson, H. R. (1951). Proc. Natl Acad. Sci. USA, 37, 205–211. CrossRef PubMed CAS Web of Science Google Scholar
Shchelkanov, M. Yu., Shibnev, V. A., Finogenova, I. T., Fediakina, T. M., Garaev, T. M., Markova, N. V. & Kirillov, I. M. (2014). Vopr. Virusol. 59(2), 37–40. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
SiMa, W. (2009). Acta Cryst. E65, o2452. Web of Science CSD CrossRef IUCr Journals Google Scholar
Wang, Y. & Stoeckli-Evans, H. (2016). IUCrData, 1, x152174. Google Scholar
Zheng, W.-N. & Wang, B. (2009). Acta Cryst. E65, o2769. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.