metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bis[di­hydro­bis­­(pyrazol-1-yl-κN2)borato]bis­(methanol-κO)iron(II)

aInstitut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth-Strasse 2, 24118 Kiel, Germany
*Correspondence e-mail: sossinger@ac.uni-kiel.de

Edited by M. Bolte, Goethe-Universität Frankfurt Germany (Received 29 July 2016; accepted 3 August 2016; online 9 August 2016)

The structure determination was undertaken as part of a project on the synthesis of new spin-crossover compounds based on octa­hedral FeII bis­(pyrazol­yl)borate complexes. The asymmetric unit of the title compound, [Fe(H2B(pz)2)2(CH3OH)2] [H2B(pz)2 = di­hydro­bis­(pyrazol-1-yl)borate, C6H8BN4], consists of one FeII cation that is located on a centre of inversion, as well as one methanol mol­ecule and one H2B(pz)2 dianion that occupy general positions. In the crystal, the FeII cations are coordinated by two methanol mol­ecules and four N atoms of two H2B(pz)2 anions within a slightly distorted octa­hedron. Bond lengths and angles between the FeII atom and the H2B(pz)2 anion are comparable to those in related FeII complexes.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Concerning the background of this project, see Naggert et al. (2015[Naggert, H., Rudnik, J., Kipgen, L., Bernien, M., Nickel, F., Arruda, L. M., Kuch, W., Näther, C. & Tuczek, F. (2015). J. Mater. Chem. C, 3, 7870-7877.]). For related crystal structures of discrete octa­hedral FeII bis­(pyrazol­yl)borate complexes with N-donor ligands, see: Real et al. (1997[Real, J. A., Muñoz, M. C., Faus, J. & Solans, X. (1997). Inorg. Chem. 36, 3008-3013.]); Thompson et al. (2004[Thompson, A. L., Goeta, A. E., Real, J. A., Galet, A. & Muñoz, M. C. (2004). Chem. Commun. pp. 1390-1391.]); Milek et al. (2013[Milek, M., Heinemann, F. W. & Khusniyarov, M. M. (2013). Inorg. Chem. 52, 11585-11592.]); Nihei et al. (2013[Nihei, M., Suzuki, Y., Kimura, N., Kera, Y. & Oshio, H. (2013). Chem. Eur. J. 19, 6946-6949.]); Kulmaczewski et al. (2014[Kulmaczewski, R., Shepherd, H. J., Cespedes, O. & Halcrow, M. A. (2014). Inorg. Chem. 53, 9809-9817.]); Naggert et al. (2015[Naggert, H., Rudnik, J., Kipgen, L., Bernien, M., Nickel, F., Arruda, L. M., Kuch, W., Näther, C. & Tuczek, F. (2015). J. Mater. Chem. C, 3, 7870-7877.]). The title compound is illustrated in Fig. 1[link]. Despite the presence of a hydroxy group, classical hydrogen-bonding interactions are not evident in the crystal structure.

[Figure 1]
Figure 1
Perspective view of the title compound with the atom labelling and displacement ellipsoids drawn at the 50% probability level. [Symmetry code for the generation of equivalent atoms: (i) −x, −y + 1, −z + 1.]

Synthesis and crystallization

Iron(II) perchlorate hydrate and solvents were purchased by Sigma–Aldrich. All reactions were carried out using dry solvents and under an inert atmosphere. Potassium di­hydro­bis­(pyrazol­yl)borate K[H2B(pz)2] and [Fe(H2B(pz)2)2(CH3OH)2] were prepared according to literature methods (Trofimenko, 1967[Trofimenko, S. (1967). J. Am. Chem. Soc. 89, 3170-3177.]; Real et al., 1997[Real, J. A., Muñoz, M. C., Faus, J. & Solans, X. (1997). Inorg. Chem. 36, 3008-3013.]).

A solution of K[H2B(pz)2] (283 mg, 1.52 mmol) in methanol (3 ml) was added dropwise to a solution of Fe(ClO4)2·6H2O (276 mg, 0.76 mmol) in methanol (1 ml). The yellow Fe[H2B(pz)2]2 solution was stirred for 10 min at room temperature. The resulting KClO4 precipitate was removed by filtration and washed with methanol (6 ml). After further stirring for one h the solution was stored at 245 K. After four days colorless crystals of [Fe(H2B(pz)2)2(CH3OH)2] were collected by suction filtration. They decompose in air within a few days.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula [Fe(C6H8BN4)2(CH4O)2]
Mr 413.88
Crystal system, space group Monoclinic, P21/n
Temperature (K) 170
a, b, c (Å) 9.7430 (5), 8.6535 (3), 12.3173 (6)
β (°) 111.670 (4)
V3) 965.09 (8)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.81
Crystal size (mm) 0.20 × 0.12 × 0.06
 
Data collection
Diffractometer Stoe IPDS2
Absorption correction Numerical (X-RED and X-SHAPE; Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.781, 0.898
No. of measured, independent and observed [I > 2σ(I)] reflections 11312, 2103, 1898
Rint 0.026
(sin θ/λ)max−1) 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.089, 1.07
No. of reflections 2103
No. of parameters 125
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.25, −0.45
Computer programs: X-AREA (Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]), XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: X-AREA (Stoe & Cie, 2008); cell refinement: X-AREA (Stoe & Cie, 2008); data reduction: X-AREA (Stoe & Cie, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis[dihydrobis(pyrazol-1-yl-κN2)borato]bis(methanol-κO)iron(II) top
Crystal data top
[Fe(C6H8B2N4)2(CH4O)2]F(000) = 432
Mr = 413.88Dx = 1.424 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.7430 (5) ÅCell parameters from 11751 reflections
b = 8.6535 (3) Åθ = 2.3–27.0°
c = 12.3173 (6) ŵ = 0.81 mm1
β = 111.670 (4)°T = 170 K
V = 965.09 (8) Å3Block, colorless
Z = 20.20 × 0.12 × 0.06 mm
Data collection top
Stoe IPDS-2
diffractometer
1898 reflections with I > 2σ(I)
ω scansRint = 0.026
Absorption correction: numerical
(X-RED and X-SHAPE; Stoe & Cie, 2008)
θmax = 27.0°, θmin = 2.3°
Tmin = 0.781, Tmax = 0.898h = 1212
11312 measured reflectionsk = 1111
2103 independent reflectionsl = 1515
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.089 w = 1/[σ2(Fo2) + (0.0485P)2 + 0.3892P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2103 reflectionsΔρmax = 0.25 e Å3
125 parametersΔρmin = 0.45 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.00000.50000.50000.02887 (12)
N10.20696 (15)0.55724 (18)0.64018 (12)0.0315 (3)
N20.31387 (15)0.64416 (17)0.62205 (13)0.0306 (3)
N30.09829 (15)0.55320 (19)0.37541 (13)0.0314 (3)
N40.22449 (15)0.63870 (17)0.40243 (13)0.0310 (3)
B10.2792 (2)0.7456 (2)0.51128 (18)0.0339 (4)
H1A0.36910.80170.51430.041*
H1B0.20210.82250.50690.041*
C10.44303 (18)0.6245 (2)0.71101 (16)0.0344 (4)
H10.53360.67300.71860.041*
C20.4231 (2)0.5218 (2)0.79007 (16)0.0365 (4)
H20.49470.48600.86140.044*
C30.2736 (2)0.4828 (2)0.74114 (16)0.0350 (4)
H30.22580.41280.77500.042*
C40.2818 (2)0.6172 (2)0.32000 (17)0.0361 (4)
H40.36980.66360.31930.043*
C50.1932 (2)0.5174 (2)0.23664 (17)0.0383 (4)
H50.20590.48230.16790.046*
C60.0806 (2)0.4795 (2)0.27593 (16)0.0353 (4)
H60.00190.41050.23720.042*
O10.09492 (14)0.26492 (15)0.51071 (11)0.0370 (3)
H1O10.08440.20740.56200.056*
C110.2429 (2)0.2333 (2)0.51817 (19)0.0433 (4)
H11A0.25640.27320.44830.065*
H11B0.25990.12140.52360.065*
H11C0.31330.28360.58770.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.02591 (19)0.0335 (2)0.02633 (19)0.00137 (13)0.00856 (13)0.00076 (13)
N10.0277 (7)0.0358 (8)0.0289 (7)0.0039 (6)0.0082 (6)0.0006 (6)
N20.0269 (7)0.0315 (7)0.0317 (7)0.0026 (5)0.0090 (6)0.0022 (6)
N30.0286 (7)0.0362 (7)0.0296 (7)0.0034 (6)0.0111 (6)0.0008 (6)
N40.0287 (7)0.0330 (7)0.0320 (7)0.0015 (6)0.0121 (6)0.0018 (6)
B10.0330 (9)0.0320 (10)0.0357 (10)0.0018 (8)0.0115 (8)0.0011 (8)
C10.0267 (8)0.0381 (9)0.0350 (9)0.0009 (7)0.0072 (7)0.0035 (7)
C20.0331 (9)0.0401 (10)0.0310 (8)0.0034 (7)0.0055 (7)0.0008 (7)
C30.0366 (9)0.0369 (9)0.0299 (8)0.0016 (7)0.0105 (7)0.0010 (7)
C40.0350 (9)0.0369 (9)0.0406 (9)0.0015 (7)0.0190 (7)0.0038 (7)
C50.0440 (10)0.0388 (10)0.0367 (9)0.0022 (8)0.0203 (8)0.0005 (7)
C60.0365 (9)0.0363 (9)0.0325 (9)0.0010 (7)0.0122 (7)0.0033 (7)
O10.0362 (6)0.0355 (7)0.0398 (7)0.0003 (5)0.0144 (5)0.0009 (5)
C110.0380 (10)0.0438 (11)0.0480 (11)0.0066 (8)0.0157 (9)0.0003 (9)
Geometric parameters (Å, º) top
Fe1—N3i2.1376 (14)C1—C21.384 (3)
Fe1—N32.1376 (14)C1—H10.9500
Fe1—N1i2.1728 (14)C2—C31.396 (3)
Fe1—N12.1729 (14)C2—H20.9500
Fe1—O12.2183 (13)C3—H30.9500
Fe1—O1i2.2183 (13)C4—C51.375 (3)
N1—C31.337 (2)C4—H40.9500
N1—N21.368 (2)C5—C61.392 (3)
N2—C11.340 (2)C5—H50.9500
N2—B11.551 (2)C6—H60.9500
N3—C61.335 (2)O1—C111.437 (2)
N3—N41.367 (2)O1—H1O10.8400
N4—C41.340 (2)C11—H11A0.9800
N4—B11.552 (2)C11—H11B0.9800
B1—H1A0.9900C11—H11C0.9800
B1—H1B0.9900
N3i—Fe1—N3180.0N2—B1—H1B110.0
N3i—Fe1—N1i89.49 (5)N4—B1—H1B110.0
N3—Fe1—N1i90.51 (5)H1A—B1—H1B108.4
N3i—Fe1—N190.51 (5)N2—C1—C2108.88 (16)
N3—Fe1—N189.49 (5)N2—C1—H1125.6
N1i—Fe1—N1180.0C2—C1—H1125.6
N3i—Fe1—O192.71 (5)C1—C2—C3104.27 (16)
N3—Fe1—O187.29 (5)C1—C2—H2127.9
N1i—Fe1—O194.73 (5)C3—C2—H2127.9
N1—Fe1—O185.27 (5)N1—C3—C2110.88 (16)
N3i—Fe1—O1i87.29 (5)N1—C3—H3124.6
N3—Fe1—O1i92.71 (5)C2—C3—H3124.6
N1i—Fe1—O1i85.27 (5)N4—C4—C5109.31 (16)
N1—Fe1—O1i94.73 (5)N4—C4—H4125.3
O1—Fe1—O1i180.0C5—C4—H4125.3
C3—N1—N2106.20 (14)C4—C5—C6104.27 (17)
C3—N1—Fe1128.24 (12)C4—C5—H5127.9
N2—N1—Fe1122.32 (11)C6—C5—H5127.9
C1—N2—N1109.77 (14)N3—C6—C5110.81 (17)
C1—N2—B1128.69 (15)N3—C6—H6124.6
N1—N2—B1121.54 (13)C5—C6—H6124.6
C6—N3—N4106.37 (14)C11—O1—Fe1124.41 (12)
C6—N3—Fe1128.01 (13)C11—O1—H1O1103.7
N4—N3—Fe1122.89 (11)Fe1—O1—H1O1115.1
C4—N4—N3109.23 (15)O1—C11—H11A109.5
C4—N4—B1129.11 (15)O1—C11—H11B109.5
N3—N4—B1121.61 (13)H11A—C11—H11B109.5
N2—B1—N4108.45 (15)O1—C11—H11C109.5
N2—B1—H1A110.0H11A—C11—H11C109.5
N4—B1—H1A110.0H11B—C11—H11C109.5
Symmetry code: (i) x, y+1, z+1.
 

Acknowledgements

This work was supported by the DFG (SFB 677 Function by Switching). We gratefully acknowledge financial support by the State of Schleswig–Holstein.

References

First citationKulmaczewski, R., Shepherd, H. J., Cespedes, O. & Halcrow, M. A. (2014). Inorg. Chem. 53, 9809–9817.  CSD CrossRef CAS PubMed Google Scholar
First citationMilek, M., Heinemann, F. W. & Khusniyarov, M. M. (2013). Inorg. Chem. 52, 11585–11592.  CSD CrossRef CAS PubMed Google Scholar
First citationNaggert, H., Rudnik, J., Kipgen, L., Bernien, M., Nickel, F., Arruda, L. M., Kuch, W., Näther, C. & Tuczek, F. (2015). J. Mater. Chem. C, 3, 7870–7877.  CSD CrossRef CAS Google Scholar
First citationNihei, M., Suzuki, Y., Kimura, N., Kera, Y. & Oshio, H. (2013). Chem. Eur. J. 19, 6946–6949.  CSD CrossRef CAS PubMed Google Scholar
First citationReal, J. A., Muñoz, M. C., Faus, J. & Solans, X. (1997). Inorg. Chem. 36, 3008–3013.  CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2008). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationThompson, A. L., Goeta, A. E., Real, J. A., Galet, A. & Muñoz, M. C. (2004). Chem. Commun. pp. 1390–1391.  Web of Science CSD CrossRef Google Scholar
First citationTrofimenko, S. (1967). J. Am. Chem. Soc. 89, 3170–3177.  CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds