organic compounds
(Z)-3-Allyl-5-(4-fluorobenzylidene)-2-sulfanylidenethiazolidin-4-one
aLaboratoire de Chimie Organique et Analytique, Université Sultan Moulay Slimane, Faculté des Sciences et Techniques, Béni-Mellal, BP 523, Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: r_elajlaoui@yahoo.fr
In the title compound, C13H10FNOS2, the sulfanylidenethiazolidine ring and the benzylidene ring are almost coplanar [dihedral angle between the two planes = 0.1 (2)°]. The mean plane through the allyl group is nearly perpendicular to the sulfanylidenethiazolidine ring, as indicated by the dihedral angle of 69.5 (5)° between them. In the crystal, molecules are linked together by weak C—H⋯O hydrogen bonds involving the same acceptor atom, forming dimers parallel to (1-22).
Keywords: crystal structure; fluorobenzylidene; sulfanylidenethiazolidin-4-one; hydrogen bonds.
CCDC reference: 1496946
Structure description
5-Arylidene-2-sulfanylidene-1,3-thiazolidinine-4-ones or 5-arylidene rhodanines are considered to be `privileged scaffolds' in the medicinal chemistry community because they present bioactivity in a large range of derivatives (Mendgen et al., 2012; Khazaei et al., 2014; Coulibaly et al., 2015; Tomasić & Masic et al., 2009). For example, these small molecules have been known to possess a wide range of biological properties such as potent and selective inhibitors of the `atypical' dual-specificity phosphatase (DSP) family member-JNK-stimulating phosphatase-1 (JSP-1) (Cutshall et al., 2005), as aldose reductase inhibitors in diabetic peripheral neuropathy (Hotta et al., 2006), and as DDX3 inhibitors for HIV replication (Maga et al., 2008). The unusual biological activities displayed by many rhodanine-based molecules have made them attractive synthetic targets.
The molecule of the title compound is build up from a 4-fluorobenzylidene ring linked to a sulfanylidenethiazolidine ring which is attached to an allyl group as shown in Fig. 1. The 4-fluorobenzylidene and the sulfanylidenethiazolidine rings are virtually coplanar with a maximum deviation from the mean plane of 0.067 (3) Å for the C4 atom. The sulfanylidenethiazolidine ring makes a dihedral angle of 69.5 (5)° with the plan through the allyl group.
Structure cohesion is ensured by weak C3—H3⋯O1 and C7—H7⋯O1 hydrogen bonds, forming dimers parallel to (12) (see Fig. 2 and Table 1).
Synthesis and crystallization
To a solution of 3-allylrhodanine (1.15 mmol, 0.2 g) in 10 ml of THF, (4-fluorobenzylidene)-4-methyl-5-oxopyrazolidin-2-ium-1-ide (1.38 mmol) was added. The mixture was refluxed for 8 h, monitored by TLC, the reaction completed and a yellow spot (TLC Rf = 0.3, using hexane/ethyl acetate 1:9) was generated cleanly. The solvent was evaporated in vacuo. The crude product was purified on silica gel using hexane:ethyl acetate (1:9) as The title compound was recrystallized from ethanol solution (yield 82%, m.p. 382 K).
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1496946
10.1107/S2414314616012360/bt4020sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2414314616012360/bt4020Isup2.hkl
Supporting information file. DOI: 10.1107/S2414314616012360/bt4020Isup3.cml
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).C13H10FNOS2 | F(000) = 288 |
Mr = 279.34 | Dx = 1.423 Mg m−3 |
Triclinic, P1 | Melting point: 382 K |
a = 4.7764 (10) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 11.750 (3) Å | Cell parameters from 2861 reflections |
c = 13.067 (3) Å | θ = 2.0–27.1° |
α = 109.917 (10)° | µ = 0.41 mm−1 |
β = 99.766 (11)° | T = 296 K |
γ = 101.71 (1)° | Block, colourless |
V = 652.0 (3) Å3 | 0.35 × 0.31 × 0.22 mm |
Z = 2 |
Bruker X8 APEX diffractometer | 2861 independent reflections |
Radiation source: fine-focus sealed tube | 2035 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.037 |
φ and ω scans | θmax = 27.1°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −6→6 |
Tmin = 0.682, Tmax = 0.745 | k = −15→15 |
17965 measured reflections | l = −16→16 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.050 | H-atom parameters constrained |
wR(F2) = 0.148 | w = 1/[σ2(Fo2) + (0.0706P)2 + 0.2274P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max < 0.001 |
2861 reflections | Δρmax = 0.54 e Å−3 |
163 parameters | Δρmin = −0.23 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.3197 (8) | 0.5284 (3) | 0.8728 (3) | 0.0779 (9) | |
C2 | 0.1461 (9) | 0.4097 (3) | 0.8479 (3) | 0.0892 (10) | |
H2 | 0.0260 | 0.3950 | 0.8937 | 0.107* | |
C3 | 0.1524 (7) | 0.3124 (3) | 0.7538 (3) | 0.0712 (8) | |
H3 | 0.0352 | 0.2313 | 0.7363 | 0.085* | |
C4 | 0.3302 (6) | 0.3326 (2) | 0.6844 (2) | 0.0551 (6) | |
C5 | 0.4984 (7) | 0.4560 (3) | 0.7132 (3) | 0.0751 (8) | |
H5 | 0.6170 | 0.4729 | 0.6676 | 0.090* | |
C6 | 0.4931 (8) | 0.5531 (3) | 0.8072 (3) | 0.0825 (9) | |
H6 | 0.6075 | 0.6349 | 0.8255 | 0.099* | |
C7 | 0.3191 (6) | 0.2259 (2) | 0.5854 (2) | 0.0555 (6) | |
H7 | 0.1924 | 0.1501 | 0.5771 | 0.067* | |
C8 | 0.4594 (5) | 0.2170 (2) | 0.5034 (2) | 0.0541 (6) | |
C9 | 0.4088 (6) | 0.0954 (2) | 0.4106 (2) | 0.0552 (6) | |
C10 | 0.7549 (5) | 0.2276 (3) | 0.3625 (2) | 0.0572 (6) | |
C11 | 0.5746 (7) | −0.0010 (3) | 0.2381 (3) | 0.0695 (8) | |
H11A | 0.5181 | −0.0773 | 0.2521 | 0.083* | |
H11B | 0.7706 | 0.0073 | 0.2253 | 0.083* | |
C12 | 0.3616 (9) | −0.0127 (3) | 0.1352 (3) | 0.0865 (10) | |
H12 | 0.3827 | 0.0586 | 0.1179 | 0.104* | |
C13 | 0.1561 (11) | −0.1087 (4) | 0.0692 (4) | 0.1183 (15) | |
H13A | 0.1254 | −0.1825 | 0.0826 | 0.142* | |
H13B | 0.0348 | −0.1060 | 0.0069 | 0.142* | |
N1 | 0.5847 (4) | 0.1081 (2) | 0.33787 (18) | 0.0548 (5) | |
O1 | 0.2415 (5) | −0.00459 (18) | 0.39528 (17) | 0.0744 (6) | |
F1 | 0.3139 (6) | 0.6243 (2) | 0.9653 (2) | 0.1186 (8) | |
S1 | 0.71039 (14) | 0.33471 (6) | 0.48434 (6) | 0.0600 (2) | |
S2 | 0.97365 (17) | 0.26959 (8) | 0.29023 (8) | 0.0789 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.098 (2) | 0.0623 (18) | 0.078 (2) | 0.0303 (17) | 0.0374 (18) | 0.0207 (16) |
C2 | 0.113 (3) | 0.075 (2) | 0.088 (2) | 0.0225 (19) | 0.058 (2) | 0.0293 (18) |
C3 | 0.0802 (19) | 0.0576 (16) | 0.0754 (19) | 0.0085 (14) | 0.0317 (16) | 0.0262 (14) |
C4 | 0.0559 (14) | 0.0505 (13) | 0.0600 (15) | 0.0112 (11) | 0.0151 (11) | 0.0248 (12) |
C5 | 0.085 (2) | 0.0580 (17) | 0.082 (2) | 0.0083 (14) | 0.0378 (17) | 0.0262 (15) |
C6 | 0.100 (2) | 0.0478 (16) | 0.093 (2) | 0.0098 (15) | 0.038 (2) | 0.0194 (15) |
C7 | 0.0557 (14) | 0.0472 (13) | 0.0619 (15) | 0.0057 (11) | 0.0148 (12) | 0.0245 (12) |
C8 | 0.0519 (13) | 0.0492 (13) | 0.0603 (15) | 0.0050 (10) | 0.0120 (11) | 0.0265 (12) |
C9 | 0.0553 (14) | 0.0487 (13) | 0.0597 (15) | 0.0081 (11) | 0.0154 (12) | 0.0221 (12) |
C10 | 0.0454 (13) | 0.0613 (15) | 0.0719 (17) | 0.0140 (11) | 0.0146 (11) | 0.0351 (13) |
C11 | 0.0727 (18) | 0.0614 (17) | 0.080 (2) | 0.0218 (14) | 0.0346 (16) | 0.0255 (15) |
C12 | 0.115 (3) | 0.067 (2) | 0.068 (2) | 0.0179 (19) | 0.0249 (19) | 0.0192 (16) |
C13 | 0.154 (4) | 0.088 (3) | 0.092 (3) | 0.031 (3) | 0.015 (3) | 0.020 (2) |
N1 | 0.0520 (11) | 0.0556 (12) | 0.0603 (13) | 0.0130 (9) | 0.0187 (10) | 0.0261 (10) |
O1 | 0.0830 (13) | 0.0523 (11) | 0.0776 (13) | −0.0033 (9) | 0.0305 (11) | 0.0210 (9) |
F1 | 0.168 (2) | 0.0730 (13) | 0.1117 (17) | 0.0337 (13) | 0.0750 (16) | 0.0134 (11) |
S1 | 0.0534 (4) | 0.0515 (4) | 0.0731 (5) | 0.0033 (3) | 0.0190 (3) | 0.0271 (3) |
S2 | 0.0669 (5) | 0.0865 (6) | 0.0954 (6) | 0.0129 (4) | 0.0382 (4) | 0.0469 (5) |
C1—C6 | 1.348 (5) | C8—S1 | 1.754 (2) |
C1—F1 | 1.351 (3) | C9—O1 | 1.210 (3) |
C1—C2 | 1.367 (5) | C9—N1 | 1.395 (3) |
C2—C3 | 1.374 (4) | C10—N1 | 1.370 (3) |
C2—H2 | 0.9300 | C10—S2 | 1.634 (3) |
C3—C4 | 1.388 (4) | C10—S1 | 1.738 (3) |
C3—H3 | 0.9300 | C11—N1 | 1.470 (3) |
C4—C5 | 1.394 (4) | C11—C12 | 1.488 (5) |
C4—C7 | 1.446 (4) | C11—H11A | 0.9700 |
C5—C6 | 1.371 (4) | C11—H11B | 0.9700 |
C5—H5 | 0.9300 | C12—C13 | 1.257 (5) |
C6—H6 | 0.9300 | C12—H12 | 0.9300 |
C7—C8 | 1.343 (4) | C13—H13A | 0.9300 |
C7—H7 | 0.9300 | C13—H13B | 0.9300 |
C8—C9 | 1.466 (4) | ||
C6—C1—F1 | 119.0 (3) | C9—C8—S1 | 109.58 (18) |
C6—C1—C2 | 122.1 (3) | O1—C9—N1 | 122.3 (2) |
F1—C1—C2 | 118.9 (3) | O1—C9—C8 | 127.1 (2) |
C1—C2—C3 | 118.8 (3) | N1—C9—C8 | 110.6 (2) |
C1—C2—H2 | 120.6 | N1—C10—S2 | 126.4 (2) |
C3—C2—H2 | 120.6 | N1—C10—S1 | 110.99 (19) |
C2—C3—C4 | 121.4 (3) | S2—C10—S1 | 122.59 (16) |
C2—C3—H3 | 119.3 | N1—C11—C12 | 112.2 (2) |
C4—C3—H3 | 119.3 | N1—C11—H11A | 109.2 |
C3—C4—C5 | 117.1 (3) | C12—C11—H11A | 109.2 |
C3—C4—C7 | 118.1 (2) | N1—C11—H11B | 109.2 |
C5—C4—C7 | 124.7 (2) | C12—C11—H11B | 109.2 |
C6—C5—C4 | 121.5 (3) | H11A—C11—H11B | 107.9 |
C6—C5—H5 | 119.2 | C13—C12—C11 | 126.9 (4) |
C4—C5—H5 | 119.2 | C13—C12—H12 | 116.6 |
C1—C6—C5 | 119.1 (3) | C11—C12—H12 | 116.6 |
C1—C6—H6 | 120.5 | C12—C13—H13A | 120.0 |
C5—C6—H6 | 120.5 | C12—C13—H13B | 120.0 |
C8—C7—C4 | 131.4 (2) | H13A—C13—H13B | 120.0 |
C8—C7—H7 | 114.3 | C10—N1—C9 | 116.2 (2) |
C4—C7—H7 | 114.3 | C10—N1—C11 | 122.7 (2) |
C7—C8—C9 | 120.7 (2) | C9—N1—C11 | 121.0 (2) |
C7—C8—S1 | 129.7 (2) | C10—S1—C8 | 92.50 (12) |
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7···O1i | 0.93 | 2.57 | 3.442 (3) | 157 |
C3—H3···O1i | 0.93 | 2.55 | 3.407 (4) | 154 |
Symmetry code: (i) −x, −y, −z+1. |
Acknowledgements
The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements and the University Sultan Moulay Slimane, Beni-Mellal, Morocco, for financial support.
References
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Coulibaly, W. K., Paquin, L., Bénie, A., Békro, Y.-A., Le Guével, R., Ravache, M., Corlu, A. & Bazureau, J. P. (2015). Med. Chem. Res. 24, 1653–1661. CrossRef CAS Google Scholar
Cutshall, N. S., O'Day, C. & Prezhdo, M. (2005). Bioorg. Med. Chem. Lett. 15, 3374–3379. Web of Science CrossRef PubMed CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Hotta, N., Akanuma, Y., Kawamori, R., Matsuoka, K., Oka, Y., Shichiri, M., Toyota, T., Nakashima, M., Yoshimura, I., Sakamoto, N. & Shigeta, Y. (2006). Diabetes Care, 29, 1538–1544. Web of Science CrossRef PubMed CAS Google Scholar
Khazaei, A., Veisi, H., Safaei, M. & Ahmadian, H. (2014). J. Sulfur Chem. 35, 270–278. CrossRef CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Maga, G., Falchi, F., Garbelli, A., Belfiore, A., Witvrouw, M., Manetti, F. & Botta, M. (2008). J. Med. Chem. 51, 6635–6638. CrossRef PubMed CAS Google Scholar
Mendgen, T., Steuer, C. & Klein, C. D. (2012). J. Med. Chem. 55, 743–753. CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tomasić, T. & Masic, L. P. (2009). Curr. Med. Chem. 16, 1596–1629. Web of Science PubMed Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.