organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(Z)-3-Allyl-5-(4-fluoro­benzyl­­idene)-2-sulfanyl­­idene­thia­zolidin-4-one

aLaboratoire de Chimie Organique et Analytique, Université Sultan Moulay Slimane, Faculté des Sciences et Techniques, Béni-Mellal, BP 523, Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: r_elajlaoui@yahoo.fr

Edited by M. Bolte, Goethe-Universität Frankfurt Germany (Received 29 July 2016; accepted 30 July 2016; online 12 August 2016)

In the title compound, C13H10FNOS2, the sulfanyl­idene­thia­zolidine ring and the benzyl­idene ring are almost coplanar [dihedral angle between the two planes = 0.1 (2)°]. The mean plane through the allyl group is nearly perpendicular to the sulfanyl­idene­thia­zolidine ring, as indicated by the dihedral angle of 69.5 (5)° between them. In the crystal, mol­ecules are linked together by weak C—H⋯O hydrogen bonds involving the same acceptor atom, forming dimers parallel to (1-22).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

5-Aryl­idene-2-sulfanyl­idene-1,3-thia­zolidinine-4-ones or 5-aryl­idene rhodanines are considered to be `privileged scaffolds' in the medicinal chemistry community because they present bioactivity in a large range of derivatives (Mendgen et al., 2012[Mendgen, T., Steuer, C. & Klein, C. D. (2012). J. Med. Chem. 55, 743-753.]; Khazaei et al., 2014[Khazaei, A., Veisi, H., Safaei, M. & Ahmadian, H. (2014). J. Sulfur Chem. 35, 270-278.]; Coulibaly et al., 2015[Coulibaly, W. K., Paquin, L., Bénie, A., Békro, Y.-A., Le Guével, R., Ravache, M., Corlu, A. & Bazureau, J. P. (2015). Med. Chem. Res. 24, 1653-1661.]; Tomasić & Masic et al., 2009[Tomasić, T. & Masic, L. P. (2009). Curr. Med. Chem. 16, 1596-1629.]). For example, these small mol­ecules have been known to possess a wide range of biological properties such as potent and selective inhibitors of the `atypical' dual-specificity phosphatase (DSP) family member-JNK-stimulating phosphatase-1 (JSP-1) (Cutshall et al., 2005[Cutshall, N. S., O'Day, C. & Prezhdo, M. (2005). Bioorg. Med. Chem. Lett. 15, 3374-3379.]), as aldose reductase inhibitors in diabetic peripheral neuropathy (Hotta et al., 2006[Hotta, N., Akanuma, Y., Kawamori, R., Matsuoka, K., Oka, Y., Shichiri, M., Toyota, T., Nakashima, M., Yoshimura, I., Sakamoto, N. & Shigeta, Y. (2006). Diabetes Care, 29, 1538-1544.]), and as DDX3 inhibitors for HIV replication (Maga et al., 2008[Maga, G., Falchi, F., Garbelli, A., Belfiore, A., Witvrouw, M., Manetti, F. & Botta, M. (2008). J. Med. Chem. 51, 6635-6638.]). The unusual biological activities displayed by many rhodanine-based mol­ecules have made them attractive synthetic targets.

The mol­ecule of the title compound is build up from a 4-fluoro­benzyl­idene ring linked to a sulfanyl­idene­thia­zolidine ring which is attached to an allyl group as shown in Fig. 1[link]. The 4-fluoro­benzyl­idene and the sulfanyl­idene­thia­zolidine rings are virtually coplanar with a maximum deviation from the mean plane of 0.067 (3) Å for the C4 atom. The sulfanyl­idene­thia­zolidine ring makes a dihedral angle of 69.5 (5)° with the plan through the allyl group.

[Figure 1]
Figure 1
Plot of the mol­ecule of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.

Structure cohesion is ensured by weak C3—H3⋯O1 and C7—H7⋯O1 hydrogen bonds, forming dimers parallel to (1[\overline{2}]2) (see Fig. 2[link] and Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O1i 0.93 2.57 3.442 (3) 157
C3—H3⋯O1i 0.93 2.55 3.407 (4) 154
Symmetry code: (i) -x, -y, -z+1.
[Figure 2]
Figure 2
Crystal packing for the title compound showing hydrogen bonds as dashed lines.

Synthesis and crystallization

To a solution of 3-allyl­rhodanine (1.15 mmol, 0.2 g) in 10 ml of THF, (4-fluoro­benzyl­idene)-4-methyl-5-oxopyrazolidin-2-ium-1-ide (1.38 mmol) was added. The mixture was refluxed for 8 h, monitored by TLC, the reaction completed and a yellow spot (TLC Rf = 0.3, using hexa­ne/ethyl acetate 1:9) was generated cleanly. The solvent was evaporated in vacuo. The crude product was purified on silica gel using hexa­ne:ethyl acetate (1:9) as eluent. The title compound was recrystallized from ethanol solution (yield 82%, m.p. 382 K).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C13H10FNOS2
Mr 279.34
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 4.7764 (10), 11.750 (3), 13.067 (3)
α, β, γ (°) 109.917 (10), 99.766 (11), 101.71 (1)
V3) 652.0 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.41
Crystal size (mm) 0.35 × 0.31 × 0.22
 
Data collection
Diffractometer Bruker X8 APEX
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.682, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 17965, 2861, 2035
Rint 0.037
(sin θ/λ)max−1) 0.641
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.148, 1.07
No. of reflections 2861
No. of parameters 163
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.54, −0.23
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

(Z)-3-Allyl-5-(4-fluorobenzylidene)-2-sulfanylidenethiazolidin-4-one top
Crystal data top
C13H10FNOS2F(000) = 288
Mr = 279.34Dx = 1.423 Mg m3
Triclinic, P1Melting point: 382 K
a = 4.7764 (10) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.750 (3) ÅCell parameters from 2861 reflections
c = 13.067 (3) Åθ = 2.0–27.1°
α = 109.917 (10)°µ = 0.41 mm1
β = 99.766 (11)°T = 296 K
γ = 101.71 (1)°Block, colourless
V = 652.0 (3) Å30.35 × 0.31 × 0.22 mm
Z = 2
Data collection top
Bruker X8 APEX
diffractometer
2861 independent reflections
Radiation source: fine-focus sealed tube2035 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
φ and ω scansθmax = 27.1°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 66
Tmin = 0.682, Tmax = 0.745k = 1515
17965 measured reflectionsl = 1616
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.148 w = 1/[σ2(Fo2) + (0.0706P)2 + 0.2274P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2861 reflectionsΔρmax = 0.54 e Å3
163 parametersΔρmin = 0.23 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3197 (8)0.5284 (3)0.8728 (3)0.0779 (9)
C20.1461 (9)0.4097 (3)0.8479 (3)0.0892 (10)
H20.02600.39500.89370.107*
C30.1524 (7)0.3124 (3)0.7538 (3)0.0712 (8)
H30.03520.23130.73630.085*
C40.3302 (6)0.3326 (2)0.6844 (2)0.0551 (6)
C50.4984 (7)0.4560 (3)0.7132 (3)0.0751 (8)
H50.61700.47290.66760.090*
C60.4931 (8)0.5531 (3)0.8072 (3)0.0825 (9)
H60.60750.63490.82550.099*
C70.3191 (6)0.2259 (2)0.5854 (2)0.0555 (6)
H70.19240.15010.57710.067*
C80.4594 (5)0.2170 (2)0.5034 (2)0.0541 (6)
C90.4088 (6)0.0954 (2)0.4106 (2)0.0552 (6)
C100.7549 (5)0.2276 (3)0.3625 (2)0.0572 (6)
C110.5746 (7)0.0010 (3)0.2381 (3)0.0695 (8)
H11A0.51810.07730.25210.083*
H11B0.77060.00730.22530.083*
C120.3616 (9)0.0127 (3)0.1352 (3)0.0865 (10)
H120.38270.05860.11790.104*
C130.1561 (11)0.1087 (4)0.0692 (4)0.1183 (15)
H13A0.12540.18250.08260.142*
H13B0.03480.10600.00690.142*
N10.5847 (4)0.1081 (2)0.33787 (18)0.0548 (5)
O10.2415 (5)0.00459 (18)0.39528 (17)0.0744 (6)
F10.3139 (6)0.6243 (2)0.9653 (2)0.1186 (8)
S10.71039 (14)0.33471 (6)0.48434 (6)0.0600 (2)
S20.97365 (17)0.26959 (8)0.29023 (8)0.0789 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.098 (2)0.0623 (18)0.078 (2)0.0303 (17)0.0374 (18)0.0207 (16)
C20.113 (3)0.075 (2)0.088 (2)0.0225 (19)0.058 (2)0.0293 (18)
C30.0802 (19)0.0576 (16)0.0754 (19)0.0085 (14)0.0317 (16)0.0262 (14)
C40.0559 (14)0.0505 (13)0.0600 (15)0.0112 (11)0.0151 (11)0.0248 (12)
C50.085 (2)0.0580 (17)0.082 (2)0.0083 (14)0.0378 (17)0.0262 (15)
C60.100 (2)0.0478 (16)0.093 (2)0.0098 (15)0.038 (2)0.0194 (15)
C70.0557 (14)0.0472 (13)0.0619 (15)0.0057 (11)0.0148 (12)0.0245 (12)
C80.0519 (13)0.0492 (13)0.0603 (15)0.0050 (10)0.0120 (11)0.0265 (12)
C90.0553 (14)0.0487 (13)0.0597 (15)0.0081 (11)0.0154 (12)0.0221 (12)
C100.0454 (13)0.0613 (15)0.0719 (17)0.0140 (11)0.0146 (11)0.0351 (13)
C110.0727 (18)0.0614 (17)0.080 (2)0.0218 (14)0.0346 (16)0.0255 (15)
C120.115 (3)0.067 (2)0.068 (2)0.0179 (19)0.0249 (19)0.0192 (16)
C130.154 (4)0.088 (3)0.092 (3)0.031 (3)0.015 (3)0.020 (2)
N10.0520 (11)0.0556 (12)0.0603 (13)0.0130 (9)0.0187 (10)0.0261 (10)
O10.0830 (13)0.0523 (11)0.0776 (13)0.0033 (9)0.0305 (11)0.0210 (9)
F10.168 (2)0.0730 (13)0.1117 (17)0.0337 (13)0.0750 (16)0.0134 (11)
S10.0534 (4)0.0515 (4)0.0731 (5)0.0033 (3)0.0190 (3)0.0271 (3)
S20.0669 (5)0.0865 (6)0.0954 (6)0.0129 (4)0.0382 (4)0.0469 (5)
Geometric parameters (Å, º) top
C1—C61.348 (5)C8—S11.754 (2)
C1—F11.351 (3)C9—O11.210 (3)
C1—C21.367 (5)C9—N11.395 (3)
C2—C31.374 (4)C10—N11.370 (3)
C2—H20.9300C10—S21.634 (3)
C3—C41.388 (4)C10—S11.738 (3)
C3—H30.9300C11—N11.470 (3)
C4—C51.394 (4)C11—C121.488 (5)
C4—C71.446 (4)C11—H11A0.9700
C5—C61.371 (4)C11—H11B0.9700
C5—H50.9300C12—C131.257 (5)
C6—H60.9300C12—H120.9300
C7—C81.343 (4)C13—H13A0.9300
C7—H70.9300C13—H13B0.9300
C8—C91.466 (4)
C6—C1—F1119.0 (3)C9—C8—S1109.58 (18)
C6—C1—C2122.1 (3)O1—C9—N1122.3 (2)
F1—C1—C2118.9 (3)O1—C9—C8127.1 (2)
C1—C2—C3118.8 (3)N1—C9—C8110.6 (2)
C1—C2—H2120.6N1—C10—S2126.4 (2)
C3—C2—H2120.6N1—C10—S1110.99 (19)
C2—C3—C4121.4 (3)S2—C10—S1122.59 (16)
C2—C3—H3119.3N1—C11—C12112.2 (2)
C4—C3—H3119.3N1—C11—H11A109.2
C3—C4—C5117.1 (3)C12—C11—H11A109.2
C3—C4—C7118.1 (2)N1—C11—H11B109.2
C5—C4—C7124.7 (2)C12—C11—H11B109.2
C6—C5—C4121.5 (3)H11A—C11—H11B107.9
C6—C5—H5119.2C13—C12—C11126.9 (4)
C4—C5—H5119.2C13—C12—H12116.6
C1—C6—C5119.1 (3)C11—C12—H12116.6
C1—C6—H6120.5C12—C13—H13A120.0
C5—C6—H6120.5C12—C13—H13B120.0
C8—C7—C4131.4 (2)H13A—C13—H13B120.0
C8—C7—H7114.3C10—N1—C9116.2 (2)
C4—C7—H7114.3C10—N1—C11122.7 (2)
C7—C8—C9120.7 (2)C9—N1—C11121.0 (2)
C7—C8—S1129.7 (2)C10—S1—C892.50 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O1i0.932.573.442 (3)157
C3—H3···O1i0.932.553.407 (4)154
Symmetry code: (i) x, y, z+1.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements and the University Sultan Moulay Slimane, Beni-Mellal, Morocco, for financial support.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationCoulibaly, W. K., Paquin, L., Bénie, A., Békro, Y.-A., Le Guével, R., Ravache, M., Corlu, A. & Bazureau, J. P. (2015). Med. Chem. Res. 24, 1653–1661.  CrossRef CAS Google Scholar
First citationCutshall, N. S., O'Day, C. & Prezhdo, M. (2005). Bioorg. Med. Chem. Lett. 15, 3374–3379.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHotta, N., Akanuma, Y., Kawamori, R., Matsuoka, K., Oka, Y., Shichiri, M., Toyota, T., Nakashima, M., Yoshimura, I., Sakamoto, N. & Shigeta, Y. (2006). Diabetes Care, 29, 1538–1544.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhazaei, A., Veisi, H., Safaei, M. & Ahmadian, H. (2014). J. Sulfur Chem. 35, 270–278.  CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMaga, G., Falchi, F., Garbelli, A., Belfiore, A., Witvrouw, M., Manetti, F. & Botta, M. (2008). J. Med. Chem. 51, 6635–6638.  CrossRef PubMed CAS Google Scholar
First citationMendgen, T., Steuer, C. & Klein, C. D. (2012). J. Med. Chem. 55, 743–753.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTomasić, T. & Masic, L. P. (2009). Curr. Med. Chem. 16, 1596–1629.  Web of Science PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds