organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4-Chloro-N-(isoquinolin-3-yl)butanamide

aDrug Discovery Lab, Department of Chemistry, Annamalai University, Annamalainagar, Chidambaram 608 002, India, and bPG & Research Department of Physics, Government Arts College, Melur 625 106, India
*Correspondence e-mail: profskabilan@gmail.com

Edited by M. Bolte, Goethe-Universität Frankfurt Germany (Received 12 July 2016; accepted 9 August 2016; online 12 August 2016)

All C, N and O atoms of the title compound, C13H13ClN2O, lie in a common plane (r.m.s. deviation = 0.096 Å). The Cl atom deviates by 0.940 (3) Å from this plane. In the crystal, mol­ecules are linked via N—H⋯N and C—H⋯O hydrogen bonds which form R22(8) and R22(16) graph-set dimers. In addition, mol­ecules are linked via C—H⋯O inter­molecular inter­actions which form C(4) chains propagating along the [100] direction of the unit cell.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Iso­quinoline derivatives act as potential phospho­diesterase type 4 (PDE4) and histone de­acetyl­ase inhibitors (Song et al., 2015[Song, G., Zhao, D., Hu, D., Li, Y., Jin, H. & Cui, Z. (2015). Bioorg. Med. Chem. Lett. 25, 4610-4614.]; Yang et al., 2015a[Yang, W., Li, L., Wang, Y., Wu, X., Li, T., Yang, N., Su, M., Sheng, L., Zheng, M., Zang, Y., Li, J. & Liu, H. (2015a). Bioorg. Med. Chem. 23, 5881-5890.]). These derivatives act as anti­cancer agents (Yang et al., 2015b[Yang, X., Yang, S., Chai, H., Yang, Z., Lee, R. J., Liao, W. & Teng, L. (2015b). PLoS One, 10, e0136649.]). In view of the inter­esting applications of iso­quinoline derivatives, we synthesized the title compound and report herein its crystal structure. The mol­ecular structure of the title compound is illustrated in Fig. 1[link].

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

All C, N and O atoms lie in a common plane (r.m.s. deviation = 0.096 Å). The Cl atom deviates by 0.940 (3) Å from this plane.

The mol­ecular structure is influenced by intra­molecular C—H⋯O inter­actions (Table 1[link]). In the crystal, N—H⋯N and C—H⋯O inter­molecular hydrogen bonds link the mol­ecules, forming [R_{2}^{2}](8) and [R_{2}^{2}](16) graph-set dimers in the unit cell (Fig. 2[link]). In addition, C—H⋯O inter­molecular inter­actions link the mol­ecules, forming C(4) chains propagating along the [100] plane of the unit cell (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O1 0.93 2.27 2.863 (4) 121
N2—H2⋯N1i 0.86 2.50 3.348 (4) 169
C6—H6⋯O1ii 0.93 2.58 3.475 (4) 161
C11—H11A⋯O1iii 0.97 2.56 3.503 (4) 163
Symmetry codes: (i) -x, -y, -z; (ii) -x+1, -y+1, -z; (iii) x-1, y, z.
[Figure 2]
Figure 2
The crystal packing of the title compound, viewed down the a axis. N—H⋯N and C—H⋯O hydrogen bonds are shown as dashed lines (see Table 1[link]). For clarity, H atoms not involved in these hydrogen bonds have been omitted.
[Figure 3]
Figure 3
The packing of the title compound, showing C—H⋯O inter­actions as dashed lines forming C(4) chain. For clarity, H atoms not involved in these inter­actions have been omitted.

Synthesis and crystallization

To a stirred solution of 3-amino­iso­quinoline (1 g, 1 equivalent) in di­chloro­methane (10 ml), 1.5 equivalents of pyridine (0.82 g) were added and allowed to stir for 20 min. The reaction mixture was cooled to 273 K. Then, 1.1 equivalents of chloro­butyryl chloride (1.07 g) were added dropwise to the reaction mass over a period of 5 min. The reaction mass was warmed to room temperature and stirring was continued for 90 min. Upon completion of the reaction, the reaction mass was quenched with water and extracted with di­chloro­methane. The organic layer was further washed with 10% sodium bicarbonate solution (10 ml), and 1 N HCl (10 ml) was added to the organic layer, which was dried over sodium sulfate and concentrated under reduced pressure. The crude product was triturated with di­chloro­methane–hexane to yield 1.2 g (69.7%) of the pure product of the title compound. The solid was further recrystallized from ethanol to yield a diffraction-quality crystal of the title compound.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C13H13ClN2O
Mr 248.70
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 5.263 (3), 9.782 (5), 12.795 (6)
α, β, γ (°) 78.591 (9), 80.188 (7), 74.418 (10)
V3) 617.2 (5)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.29
Crystal size (mm) 0.40 × 0.20 × 0.20
 
Data collection
Diffractometer Rigaku Saturn724+ area-dectector
No. of measured, independent and observed [I > 2σ(I)] reflections 3534, 2746, 1546
Rint 0.124
(sin θ/λ)max−1) 0.653
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.227, 1.01
No. of reflections 2746
No. of parameters 154
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.20, −0.51
Computer programs: CrystalClear SM-Expert (Rigaku, 2011[Rigaku (2011). CrystalClear SM-Expert. Rigaku Corporation, Tokyo, Japan.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: CrystalClear SM-Expert (Rigaku, 2011); cell refinement: CrystalClear SM-Expert (Rigaku, 2011); data reduction: CrystalClear SM-Expert (Rigaku, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

4-Chloro-N-(isoquinolin-3-yl)butanamide top
Crystal data top
C13H13ClN2OZ = 2
Mr = 248.70F(000) = 260
Triclinic, P1Dx = 1.338 Mg m3
a = 5.263 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.782 (5) ÅCell parameters from 2288 reflections
c = 12.795 (6) Åθ = 3.2–26.8°
α = 78.591 (9)°µ = 0.29 mm1
β = 80.188 (7)°T = 293 K
γ = 74.418 (10)°Prism, colourless
V = 617.2 (5) Å30.40 × 0.20 × 0.20 mm
Data collection top
Rigaku Saturn724+ area-dectector
diffractometer
Rint = 0.124
Radiation source: fine-focus sealed tubeθmax = 27.7°, θmin = 3.3°
ω scansh = 66
3534 measured reflectionsk = 128
2746 independent reflectionsl = 1611
1546 reflections with I > 2σ(I)
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.069H-atom parameters constrained
wR(F2) = 0.227 w = 1/[σ2(Fo2) + (0.1016P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
2746 reflectionsΔρmax = 0.20 e Å3
154 parametersΔρmin = 0.51 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.2114 (2)0.32757 (11)0.44065 (7)0.0864 (4)
O10.2508 (5)0.3932 (2)0.12457 (19)0.0706 (7)
N10.2207 (5)0.0212 (3)0.10506 (19)0.0479 (6)
N20.1134 (5)0.1921 (3)0.04217 (18)0.0504 (6)
H20.01600.13720.04880.060*
C10.3335 (6)0.0247 (3)0.1944 (3)0.0544 (8)
H10.31330.11250.23400.065*
C20.4829 (6)0.0498 (3)0.2343 (2)0.0490 (7)
C30.5944 (7)0.0020 (4)0.3322 (3)0.0592 (8)
H30.57020.08840.37310.071*
C40.7372 (7)0.0742 (4)0.3668 (3)0.0668 (9)
H40.81060.03940.43090.080*
C50.7737 (7)0.2064 (4)0.3051 (3)0.0617 (9)
H50.87220.25730.32910.074*
C60.6667 (6)0.2599 (3)0.2112 (3)0.0554 (8)
H60.69230.34680.17170.066*
C70.5160 (6)0.1831 (3)0.1737 (2)0.0477 (7)
C80.3925 (6)0.2331 (3)0.0787 (2)0.0497 (7)
H80.40760.32050.03690.060*
C90.2501 (5)0.1512 (3)0.0488 (2)0.0446 (7)
C100.1164 (6)0.3077 (3)0.1209 (2)0.0485 (7)
C110.0623 (6)0.3197 (3)0.2049 (2)0.0557 (8)
H11A0.24230.32430.16980.067*
H11B0.00440.23360.23810.067*
C120.0639 (6)0.4503 (3)0.2919 (3)0.0585 (8)
H12A0.09740.53520.25830.070*
H12B0.11030.43910.33380.070*
C130.2694 (7)0.4728 (4)0.3661 (3)0.0643 (9)
H13A0.26980.56150.41610.077*
H13B0.44350.48310.32430.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1257 (10)0.0752 (7)0.0648 (6)0.0301 (6)0.0284 (6)0.0042 (5)
O10.0827 (17)0.0644 (15)0.0754 (15)0.0452 (13)0.0274 (13)0.0170 (12)
N10.0511 (14)0.0387 (13)0.0539 (14)0.0145 (11)0.0064 (11)0.0026 (10)
N20.0528 (15)0.0450 (14)0.0557 (14)0.0218 (11)0.0103 (11)0.0032 (11)
C10.0579 (19)0.0437 (17)0.0635 (19)0.0212 (14)0.0089 (15)0.0002 (13)
C20.0531 (18)0.0396 (16)0.0554 (17)0.0136 (13)0.0060 (13)0.0079 (12)
C30.066 (2)0.0543 (19)0.0581 (19)0.0200 (16)0.0130 (15)0.0008 (14)
C40.077 (2)0.067 (2)0.063 (2)0.0202 (18)0.0255 (17)0.0069 (17)
C50.068 (2)0.057 (2)0.068 (2)0.0229 (17)0.0087 (16)0.0199 (16)
C60.062 (2)0.0465 (17)0.0624 (19)0.0196 (15)0.0059 (15)0.0126 (14)
C70.0435 (16)0.0436 (16)0.0571 (17)0.0128 (13)0.0006 (13)0.0120 (13)
C80.0557 (18)0.0409 (16)0.0548 (17)0.0193 (14)0.0040 (13)0.0053 (12)
C90.0443 (16)0.0397 (15)0.0485 (15)0.0135 (12)0.0003 (12)0.0047 (11)
C100.0511 (17)0.0450 (16)0.0516 (16)0.0205 (13)0.0084 (12)0.0007 (12)
C110.0577 (19)0.0545 (18)0.0604 (18)0.0265 (15)0.0130 (14)0.0011 (14)
C120.058 (2)0.0500 (18)0.068 (2)0.0219 (15)0.0162 (15)0.0065 (14)
C130.069 (2)0.0540 (19)0.070 (2)0.0187 (17)0.0199 (17)0.0055 (15)
Geometric parameters (Å, º) top
Cl1—C131.796 (4)C5—H50.9300
O1—C101.222 (3)C6—C71.420 (4)
N1—C11.321 (4)C6—H60.9300
N1—C91.366 (3)C7—C81.415 (4)
N2—C101.359 (3)C8—C91.375 (4)
N2—C91.407 (4)C8—H80.9300
N2—H20.8600C10—C111.513 (4)
C1—C21.415 (4)C11—C121.520 (4)
C1—H10.9300C11—H11A0.9700
C2—C71.417 (4)C11—H11B0.9700
C2—C31.418 (4)C12—C131.503 (4)
C3—C41.364 (4)C12—H12A0.9700
C3—H30.9300C12—H12B0.9700
C4—C51.418 (5)C13—H13A0.9700
C4—H40.9300C13—H13B0.9700
C5—C61.363 (5)
C1—N1—C9116.6 (2)C9—C8—H8120.3
C10—N2—C9128.0 (2)C7—C8—H8120.3
C10—N2—H2116.0N1—C9—C8124.0 (3)
C9—N2—H2116.0N1—C9—N2111.8 (2)
N1—C1—C2124.9 (3)C8—C9—N2124.2 (3)
N1—C1—H1117.5O1—C10—N2123.8 (3)
C2—C1—H1117.5O1—C10—C11123.0 (2)
C1—C2—C7117.7 (3)N2—C10—C11113.2 (2)
C1—C2—C3122.9 (3)C10—C11—C12113.4 (2)
C7—C2—C3119.5 (3)C10—C11—H11A108.9
C4—C3—C2120.4 (3)C12—C11—H11A108.9
C4—C3—H3119.8C10—C11—H11B108.9
C2—C3—H3119.8C12—C11—H11B108.9
C3—C4—C5120.1 (3)H11A—C11—H11B107.7
C3—C4—H4120.0C13—C12—C11113.1 (3)
C5—C4—H4120.0C13—C12—H12A109.0
C6—C5—C4121.0 (3)C11—C12—H12A109.0
C6—C5—H5119.5C13—C12—H12B109.0
C4—C5—H5119.5C11—C12—H12B109.0
C5—C6—C7120.1 (3)H12A—C12—H12B107.8
C5—C6—H6120.0C12—C13—Cl1112.8 (2)
C7—C6—H6120.0C12—C13—H13A109.0
C8—C7—C2117.4 (3)Cl1—C13—H13A109.0
C8—C7—C6123.6 (3)C12—C13—H13B109.0
C2—C7—C6119.0 (3)Cl1—C13—H13B109.0
C9—C8—C7119.4 (3)H13A—C13—H13B107.8
C9—N1—C1—C20.8 (5)C2—C7—C8—C90.7 (4)
N1—C1—C2—C70.5 (5)C6—C7—C8—C9179.9 (3)
N1—C1—C2—C3178.3 (3)C1—N1—C9—C81.4 (4)
C1—C2—C3—C4179.9 (3)C1—N1—C9—N2177.6 (2)
C7—C2—C3—C41.3 (5)C7—C8—C9—N10.7 (4)
C2—C3—C4—C50.3 (5)C7—C8—C9—N2178.2 (2)
C3—C4—C5—C60.4 (6)C10—N2—C9—N1174.0 (3)
C4—C5—C6—C70.1 (5)C10—N2—C9—C87.0 (5)
C1—C2—C7—C81.2 (4)C9—N2—C10—O12.2 (5)
C3—C2—C7—C8177.6 (3)C9—N2—C10—C11178.3 (3)
C1—C2—C7—C6179.5 (3)O1—C10—C11—C121.7 (5)
C3—C2—C7—C61.6 (4)N2—C10—C11—C12178.9 (3)
C5—C6—C7—C8178.2 (3)C10—C11—C12—C13172.0 (3)
C5—C6—C7—C21.0 (5)C11—C12—C13—Cl163.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O10.932.272.863 (4)121
N2—H2···N1i0.862.503.348 (4)169
C6—H6···O1ii0.932.583.475 (4)161
C11—H11A···O1iii0.972.563.503 (4)163
Symmetry codes: (i) x, y, z; (ii) x+1, y+1, z; (iii) x1, y, z.
 

Footnotes

Additional correspondence author: s_selvanayagam@rediffmail.com

References

First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (2011). CrystalClear SM-Expert. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSong, G., Zhao, D., Hu, D., Li, Y., Jin, H. & Cui, Z. (2015). Bioorg. Med. Chem. Lett. 25, 4610–4614.  CrossRef CAS PubMed Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, W., Li, L., Wang, Y., Wu, X., Li, T., Yang, N., Su, M., Sheng, L., Zheng, M., Zang, Y., Li, J. & Liu, H. (2015a). Bioorg. Med. Chem. 23, 5881–5890.  CrossRef CAS PubMed Google Scholar
First citationYang, X., Yang, S., Chai, H., Yang, Z., Lee, R. J., Liao, W. & Teng, L. (2015b). PLoS One, 10, e0136649.  CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds