metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(18-Crown-6-κ6O){(tri­methyl­sil­yl)[6-(tri­methyl­silyl­amino)­pyridin-2-yl-κN1]aza­nido-κN}potassium(I)

aDepartment of Chemistry and Physics, Armstrong State University, Savannah, GA 31419, USA, and bDepartment of Chemistry, The University of Tennessee, Knoxville, TN, USA
*Correspondence e-mail: gary.guillet@armstrong.edu

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México (Received 28 July 2016; accepted 20 August 2016; online 26 August 2016)

The title complex, [K(C11H22N3Si2)(C12H24O6)], contains a single K+ cation coordinated by a monoanionic (6-tri­methyl­silyl­amino­pyridin-2-yl)(tri­methyl­sil­yl)aza­nide (HL) ligand and an 18-crown-6 ligand. One SiMe3 group in HL is disordered over two positions, with an occupancy ratio of 0.727 (7):0.273 (7). The K+ cation is eight-coordinated, distributed between the pyridyl and aza­nide N atoms of HL, forming a four-membered ring, and a κ6 18-crown-6 ligand. The complex is best described as a contact ion pair and, unlike other similar literature examples, this complex does not dimerize. No inter­molecular hydrogen bonding is observed in the crystal structure, likely indicating that weak electrostatic inter­actions are the dominant feature directing the crystal packing.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound (Fig. 1[link]) is a monometallic complex comprised of a K+ cation that is eight-coordinate bonded to a monoanionic 6-(tri­methyl­silyl­amino)­pyridin-2-yl-(tri­methyl­sil­yl)aza­nido ligand via the pyridyl nitro­gen (N2) and the aza­nido nitro­gen (N1), as well as to an 18-crown-6 ligand via six O atoms (O1–O6). The complex was synthesized by combining 2,6-bis­(tri­methyl­silyl­amino)­pyridine with excess potassium hydride and 18-crown-6 in tetra­hydro­furan (THF) and is best described as a contact ion pair.

[Figure 1]
Figure 1
A view of the mol­ecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

There are two prior comparable complexes formed from the similar 2-tri­methyl­silyl­amino­pyridine ligand and a crown ether derivative, one utilizing 12-crown-4 (Liddle & Clegg, 2001[Liddle, S. T. & Clegg, W. (2001). J. Chem. Soc. Dalton Trans. pp. 402-408.]) and the other 15-crown-5 (Liddle & Clegg, 2002[Liddle, S. T. & Clegg, W. (2002). Polyhedron, 21, 2451-2455.]). In contrast to the title complex, these structures both form dimers in the crystal structure. The dimer formed with 12-crown-4 bridges the two K+ cations by the pyridyl and aza­nido N atoms of the 2-tri­methyl­silyl­aza­nido­pyridine, while the dimer formed with 15-crown-5 bridges instead via a single O atom in the 15-crown-5 ligand. This difference in the 15-crown-5 complex is attributed by the authors to the increased steric inter­action between the bulkier 15-crown-5 and the tri­methyl­silyl moiety, labelling it a `slipped' dimer. The K—Npyrid­yl bond length in the title complex, K1—N2 = 2.858 (2) Å, fits in the range set by these two complexes (2.793–2.858 Å) as does the K—Naza­nido bond length, K1—N1 = 2.822 (2) Å with the range being 2.800–2.912 Å for the prior complexes. The bonds between the potassium and the crown ether O atoms cover a similar range [2.770 (2)–3.049 (2) Å] to those observed for the 12-crown-4 complex [2.778–3.227 Å] and the 15-crown-5 complex [2.776–2.875 Å]. This is unsurprising since the K+ cation in all three cases is eight-coordinate.

One stark difference is the distance the K+ cation sits above the mean plane of the crown ether O atoms. In the title complex the distance is 1.100 (1) Å, while in the 12-crown-4 complex it is 2.535 Å and in the 15-crown-5 complex it is 1.558 Å. It is commonly accepted that K+ has close to an ideal fit within the 18-crown-6 mol­ecule compared to other crown ether derivatives like 12-crown-4 or 15-crown-5. This is supported by a related complex reported with the less steric­ally demanding 2-phenyl­amido­pyridine ligand and dibenzo-18-crown-6. This complex exhibits the same coordination environment about the K+ cation as observed in the title complex with similar K—N bond lengths for the NPyrid­yl and NAza­nido of 2.852 and 2.794 Å, respectively, and the K+ cation in this case sits 0.783 Å above the mean plane of O atoms of the dibenzo-18-crown-6 (Clegg & Liddle, 2004[Clegg, W. & Liddle, S. T. (2004). Acta Cryst. E60, m1495-m1497.]). The shorter K+–crown distance compared to the related distance in the title complex could be attributed to the closer approach of the dibenzo-18-crown-6 to the less sterically bulky 2-phenyl­amino­pyridine ligand compared to the 6-(tri­methyl­silyl­amino)­pyridin-2-yl-(tri­methyl­sil­yl)aza­nido ligand used in this work.

Synthesis and crystallization

The 2,6-bis­(tri­methyl­silyl­amino)­pyridine used herein was synthesized according to a previous report (Danièle et al., 2001[Danièle, S., Drost, C., Gehrhus, B., Hawkins, S. M., Hitchcock, P. B., Lappert, M. F., Merle, P. G. & Bott, S. G. (2001). J. Chem. Soc. Dalton Trans. pp. 3179-3188.]). The synthesis of the title complex was carried out in an air-free environment in an N2-filled glovebox. 2,6-Bis(tri­methyl­silyl­amino)­pyridine (125 mg, 0.493 mmol) was dissolved in 5 ml of THF. Approximately two equivalents of potassium hydride (40 mg, 0.998 mmol) and two equivalents of 18-crown-6 (261 mg, 0.987 mmol) were added to the reaction with an additional 5 ml of THF. The slurry was heated to 45°C to form a golden-yellow solution over the course of one h. The solution was cooled to room temperature and the solvent was removed under reduced pressure to yield a powdery white residue. The residue was dissolved in benzene and filtered through celite. Crystals appropriate for X-ray crystallography were grown by a layering diffusion of the benzene solution with hexa­nes and the complex was isolated as pale-yellow crystals.

Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 1[link]. One SiMe3 group is disordered over two positions, Si2/C9/C10/C11 and Si2′/C9′/C10′/C11′, with site occupancies converging to 0.727 (7) and 0.273 (7), respectively.

Table 1
Experimental details

Crystal data
Chemical formula [K(C11H22N3Si2)(C12H24O6)]
Mr 555.91
Crystal system, space group Monoclinic, I2/a
Temperature (K) 173
a, b, c (Å) 20.3301 (10), 17.4558 (6), 20.5691 (11)
β (°) 119.399 (7)
V3) 6359.5 (6)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.28
Crystal size (mm) 0.56 × 0.36 × 0.29
 
Data collection
Diffractometer Rigaku XtaLAB mini
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.797, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 27816, 5770, 4565
Rint 0.046
(sin θ/λ)max−1) 0.600
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.140, 1.05
No. of reflections 5770
No. of parameters 350
No. of restraints 6
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.64, −0.28
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

(18-Crown-6-κ6O){(trimethylsilyl)[6-(trimethylsilylamino)pyridin-2-yl-κN1]azanido-κN}potassium(I) top
Crystal data top
[K(C11H22N3Si2)(C12H24O6)]F(000) = 2400
Mr = 555.91Dx = 1.161 Mg m3
Monoclinic, I2/aMo Kα radiation, λ = 0.71073 Å
a = 20.3301 (10) ÅCell parameters from 8021 reflections
b = 17.4558 (6) Åθ = 1.6–27.5°
c = 20.5691 (11) ŵ = 0.28 mm1
β = 119.399 (7)°T = 173 K
V = 6359.5 (6) Å3Block, pale yellow
Z = 80.56 × 0.36 × 0.29 mm
Data collection top
Rigaku XtaLAB mini
diffractometer
5770 independent reflections
Radiation source: Sealed Tube4565 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.046
Detector resolution: 13.6612 pixels mm-1θmax = 25.3°, θmin = 2.3°
ω scansh = 2424
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
k = 2020
Tmin = 0.797, Tmax = 1.000l = 2424
27816 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: mixed
wR(F2) = 0.140H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0533P)2 + 12.3202P]
where P = (Fo2 + 2Fc2)/3
5770 reflections(Δ/σ)max < 0.001
350 parametersΔρmax = 0.64 e Å3
6 restraintsΔρmin = 0.28 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
K10.37601 (3)0.33574 (4)0.41659 (3)0.03787 (17)
Si10.53829 (5)0.24442 (5)0.36944 (4)0.0440 (2)
Si20.22824 (17)0.56321 (18)0.16953 (19)0.0538 (7)0.727 (7)
O50.24060 (11)0.25955 (12)0.33205 (11)0.0432 (5)
O60.33257 (12)0.20087 (12)0.47690 (11)0.0493 (5)
O20.48287 (12)0.40416 (13)0.55274 (12)0.0542 (6)
O40.22649 (11)0.42225 (13)0.34204 (13)0.0548 (6)
N10.47290 (12)0.31219 (14)0.35653 (12)0.0382 (5)
N20.38208 (12)0.40545 (13)0.29390 (12)0.0348 (5)
O10.48377 (13)0.24315 (13)0.53913 (13)0.0561 (6)
O30.34216 (13)0.47888 (14)0.47999 (14)0.0636 (7)
C10.44893 (14)0.37042 (15)0.30789 (14)0.0340 (6)
N30.28526 (15)0.49256 (17)0.2328 (2)0.0572 (8)
C50.35350 (15)0.46304 (16)0.24448 (15)0.0392 (7)
C20.48654 (17)0.39912 (17)0.27002 (17)0.0446 (7)
H20.53190.37730.27880.054*
C190.18511 (17)0.30613 (19)0.27335 (17)0.0486 (8)
H19A0.14080.27530.24270.058*
H19B0.20530.32410.24200.058*
C180.16240 (17)0.3741 (2)0.30315 (19)0.0532 (8)
H18A0.12200.40200.26230.064*
H18B0.14450.35690.33660.064*
C40.3887 (2)0.49176 (18)0.20632 (18)0.0512 (8)
H40.36760.53170.17230.061*
C30.4565 (2)0.45838 (19)0.22108 (19)0.0540 (8)
H3A0.48190.47680.19710.065*
C200.21142 (17)0.2138 (2)0.36939 (17)0.0505 (8)
H20A0.16700.18620.33330.061*
H20B0.19720.24610.39890.061*
C60.53333 (19)0.2108 (2)0.28003 (18)0.0547 (8)
H6A0.48220.21450.24000.082*
H6B0.54980.15850.28550.082*
H6C0.56540.24230.26910.082*
C210.2714 (2)0.15905 (19)0.41856 (18)0.0561 (9)
H21A0.25110.12280.43990.067*
H21B0.28920.13070.38970.067*
C230.45575 (19)0.2034 (2)0.58003 (18)0.0581 (9)
H23A0.43780.23930.60380.070*
H23B0.49530.17230.61840.070*
C220.39254 (19)0.1539 (2)0.5265 (2)0.0587 (9)
H22A0.40940.12200.49890.070*
H22B0.37590.12070.55340.070*
C130.5376 (2)0.3591 (2)0.6117 (2)0.0724 (11)
H13A0.52040.34720.64690.087*
H13B0.58470.38730.63780.087*
C70.63966 (19)0.2734 (3)0.4331 (2)0.0780 (12)
H7A0.65170.31690.41240.117*
H7B0.67240.23160.43800.117*
H7C0.64640.28640.48130.117*
C80.5198 (2)0.1573 (2)0.4111 (2)0.0656 (10)
H8A0.52670.16960.45960.098*
H8B0.55440.11740.41580.098*
H8C0.46890.14020.37950.098*
C120.5499 (2)0.2879 (3)0.5811 (2)0.0786 (12)
H12A0.57120.30070.54930.094*
H12B0.58680.25700.62200.094*
C140.4656 (2)0.4693 (3)0.5824 (3)0.0738 (13)
C150.4119 (2)0.5184 (2)0.5220 (3)0.0717 (12)
H15A0.40370.56500.54260.086*
H15B0.43230.53230.48970.086*
C160.2860 (2)0.5253 (2)0.4243 (3)0.0801 (13)
H16A0.30250.54250.38980.096*
H16B0.27730.57010.44700.096*
C170.2145 (2)0.4802 (2)0.3833 (3)0.0798 (13)
H17A0.20130.45730.41840.096*
H17B0.17350.51340.35000.096*
C100.2656 (5)0.6614 (5)0.2001 (7)0.0866 (16)0.727 (7)
H10A0.26190.67470.24350.130*0.727 (7)
H10B0.23660.69710.16070.130*0.727 (7)
H10C0.31750.66330.21190.130*0.727 (7)
C90.2135 (4)0.5557 (4)0.0737 (3)0.0866 (16)0.727 (7)
H9A0.26150.55410.07540.130*0.727 (7)
H9B0.18540.59930.04510.130*0.727 (7)
H9C0.18590.50970.05080.130*0.727 (7)
C110.1346 (3)0.5513 (4)0.1639 (4)0.0866 (16)0.727 (7)
H11A0.11770.49940.15060.130*0.727 (7)
H11B0.09870.58540.12670.130*0.727 (7)
H11C0.13890.56310.21140.130*0.727 (7)
H14A0.515 (2)0.493 (2)0.615 (2)0.089 (13)*
H14B0.448 (3)0.453 (3)0.613 (3)0.108 (17)*
H30.274 (2)0.474 (2)0.260 (2)0.054 (12)*
C9'0.1665 (11)0.5500 (10)0.0965 (10)0.113 (6)0.273 (7)
H9'A0.19370.51480.08260.169*0.273 (7)
H9'B0.15620.59600.06760.169*0.273 (7)
H9'C0.11980.52700.08730.169*0.273 (7)
Si2'0.2232 (6)0.5729 (6)0.1957 (6)0.068 (2)0.273 (7)
C10'0.2770 (15)0.6586 (13)0.216 (2)0.113 (6)0.273 (7)
H10D0.29980.66950.26830.169*0.273 (7)
H10E0.24450.70020.18800.169*0.273 (7)
H10F0.31570.65240.20250.169*0.273 (7)
C11'0.1599 (10)0.5936 (10)0.2300 (13)0.113 (6)0.273 (7)
H11D0.14040.54660.23790.169*0.273 (7)
H11E0.11900.62450.19420.169*0.273 (7)
H11F0.18630.62100.27630.169*0.273 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.0336 (3)0.0448 (4)0.0361 (3)0.0076 (3)0.0177 (3)0.0087 (3)
Si10.0349 (4)0.0534 (5)0.0350 (4)0.0100 (4)0.0104 (4)0.0071 (4)
Si20.0354 (9)0.0394 (9)0.0706 (18)0.0066 (6)0.0136 (11)0.0092 (11)
O50.0381 (11)0.0529 (12)0.0373 (11)0.0103 (9)0.0175 (9)0.0108 (9)
O60.0479 (12)0.0523 (13)0.0407 (11)0.0096 (10)0.0164 (10)0.0067 (10)
O20.0497 (13)0.0575 (14)0.0470 (13)0.0146 (11)0.0172 (11)0.0130 (11)
O40.0396 (12)0.0573 (14)0.0726 (15)0.0078 (10)0.0316 (11)0.0234 (12)
N10.0334 (12)0.0470 (14)0.0307 (12)0.0035 (10)0.0129 (10)0.0056 (10)
N20.0290 (11)0.0391 (13)0.0304 (12)0.0017 (10)0.0102 (10)0.0054 (10)
O10.0516 (13)0.0570 (14)0.0569 (14)0.0085 (11)0.0244 (12)0.0044 (11)
O30.0507 (14)0.0711 (16)0.0800 (17)0.0282 (12)0.0406 (14)0.0419 (14)
C10.0297 (13)0.0370 (15)0.0288 (13)0.0040 (12)0.0093 (11)0.0141 (12)
N30.0378 (15)0.0503 (18)0.076 (2)0.0042 (12)0.0225 (15)0.0138 (16)
C50.0361 (15)0.0354 (15)0.0344 (15)0.0024 (12)0.0083 (13)0.0071 (12)
C20.0456 (17)0.0433 (17)0.0542 (18)0.0031 (14)0.0316 (15)0.0109 (14)
C190.0391 (16)0.059 (2)0.0389 (17)0.0070 (14)0.0123 (14)0.0097 (14)
C180.0329 (16)0.063 (2)0.061 (2)0.0083 (15)0.0212 (15)0.0112 (17)
C40.069 (2)0.0396 (17)0.0448 (18)0.0027 (16)0.0275 (17)0.0006 (14)
C30.074 (2)0.0450 (19)0.060 (2)0.0067 (17)0.0469 (19)0.0076 (16)
C200.0428 (17)0.066 (2)0.0389 (17)0.0227 (16)0.0171 (14)0.0134 (15)
C60.055 (2)0.059 (2)0.0526 (19)0.0118 (16)0.0284 (17)0.0096 (16)
C210.065 (2)0.054 (2)0.0481 (19)0.0271 (17)0.0267 (17)0.0129 (16)
C230.0481 (19)0.079 (2)0.0417 (18)0.0054 (17)0.0177 (16)0.0048 (17)
C220.057 (2)0.057 (2)0.063 (2)0.0006 (17)0.0295 (18)0.0078 (17)
C130.063 (2)0.080 (3)0.054 (2)0.025 (2)0.0122 (19)0.008 (2)
C70.0398 (19)0.100 (3)0.072 (3)0.014 (2)0.0098 (18)0.026 (2)
C80.079 (3)0.063 (2)0.050 (2)0.0204 (19)0.0273 (19)0.0039 (17)
C120.046 (2)0.084 (3)0.082 (3)0.007 (2)0.013 (2)0.004 (2)
C140.059 (2)0.098 (3)0.075 (3)0.043 (2)0.041 (2)0.057 (3)
C150.048 (2)0.065 (2)0.106 (3)0.0242 (19)0.040 (2)0.047 (2)
C160.056 (2)0.064 (3)0.116 (4)0.006 (2)0.040 (2)0.045 (2)
C170.048 (2)0.079 (3)0.110 (3)0.0038 (19)0.037 (2)0.048 (3)
C100.064 (2)0.067 (2)0.106 (3)0.0136 (18)0.024 (2)0.015 (2)
C90.064 (2)0.067 (2)0.106 (3)0.0136 (18)0.024 (2)0.015 (2)
C110.064 (2)0.067 (2)0.106 (3)0.0136 (18)0.024 (2)0.015 (2)
C9'0.082 (8)0.059 (6)0.154 (14)0.033 (5)0.024 (8)0.001 (7)
Si2'0.048 (3)0.067 (4)0.076 (5)0.011 (2)0.021 (3)0.017 (4)
C10'0.082 (8)0.059 (6)0.154 (14)0.033 (5)0.024 (8)0.001 (7)
C11'0.082 (8)0.059 (6)0.154 (14)0.033 (5)0.024 (8)0.001 (7)
Geometric parameters (Å, º) top
K1—O12.889 (2)C6—H6C0.9600
K1—O22.831 (2)C21—H21A0.9700
K1—O33.049 (2)C21—H21B0.9700
K1—O43.049 (2)C23—H23A0.9700
K1—O52.770 (2)C23—H23B0.9700
K1—O62.990 (2)C23—C221.491 (5)
K1—N12.822 (2)C22—H22A0.9700
K1—N22.858 (2)C22—H22B0.9700
Si1—N11.700 (2)C13—H13A0.9700
Si1—C61.885 (3)C13—H13B0.9700
Si1—C71.889 (4)C13—C121.469 (6)
Si1—C81.873 (4)C7—H7A0.9600
Si2—N31.754 (4)C7—H7B0.9600
Si2—C101.856 (9)C7—H7C0.9600
Si2—C91.847 (7)C8—H8A0.9600
Si2—C111.862 (7)C8—H8B0.9600
O5—C191.433 (4)C8—H8C0.9600
O5—C201.423 (4)C12—H12A0.9700
O6—C211.433 (4)C12—H12B0.9700
O6—C221.407 (4)C14—C151.462 (6)
O2—C131.416 (4)C14—H14A0.98 (5)
O2—C141.414 (5)C14—H14B0.91 (5)
O4—C181.422 (4)C15—H15A0.9700
O4—C171.417 (4)C15—H15B0.9700
N1—C11.339 (4)C16—H16A0.9700
N2—C11.385 (3)C16—H16B0.9700
N2—C51.342 (4)C16—C171.497 (5)
O1—C231.409 (4)C17—H17A0.9700
O1—C121.423 (4)C17—H17B0.9700
O3—C151.425 (4)C10—H10A0.9600
O3—C161.410 (5)C10—H10B0.9600
C1—C21.424 (4)C10—H10C0.9600
N3—C51.386 (4)C9—H9A0.9600
N3—H30.76 (3)C9—H9B0.9600
N3—Si2'1.788 (11)C9—H9C0.9600
C5—C41.389 (4)C11—H11A0.9600
C2—H20.9300C11—H11B0.9600
C2—C31.361 (5)C11—H11C0.9600
C19—H19A0.9700C9'—H9'A0.9600
C19—H19B0.9700C9'—H9'B0.9600
C19—C181.507 (4)C9'—H9'C0.9600
C18—H18A0.9700C9'—Si2'1.828 (17)
C18—H18B0.9700Si2'—C10'1.78 (2)
C4—H40.9300Si2'—C11'1.782 (17)
C4—C31.387 (5)C10'—H10D0.9600
C3—H3A0.9300C10'—H10E0.9600
C20—H20A0.9700C10'—H10F0.9600
C20—H20B0.9700C11'—H11D0.9600
C20—C211.488 (5)C11'—H11E0.9600
C6—H6A0.9600C11'—H11F0.9600
C6—H6B0.9600
O5—K1—O658.49 (6)H6B—C6—H6C109.5
O5—K1—O2150.12 (6)O6—C21—C20109.1 (3)
O5—K1—O458.92 (6)O6—C21—H21A109.9
O5—K1—N1110.33 (6)O6—C21—H21B109.9
O5—K1—N296.35 (6)C20—C21—H21A109.9
O5—K1—O1111.93 (6)C20—C21—H21B109.9
O5—K1—O3107.36 (6)H21A—C21—H21B108.3
O6—K1—O4100.02 (6)O1—C23—H23A110.2
O6—K1—O3107.05 (6)O1—C23—H23B110.2
O2—K1—O699.28 (6)O1—C23—C22107.4 (3)
O2—K1—O4112.34 (7)H23A—C23—H23B108.5
O2—K1—N2110.43 (7)C22—C23—H23A110.2
O2—K1—O159.19 (7)C22—C23—H23B110.2
O2—K1—O357.04 (7)O6—C22—C23108.8 (3)
O4—K1—O355.30 (6)O6—C22—H22A109.9
N1—K1—O6118.60 (7)O6—C22—H22B109.9
N1—K1—O297.64 (7)C23—C22—H22A109.9
N1—K1—O4126.14 (7)C23—C22—H22B109.9
N1—K1—N248.21 (6)H22A—C22—H22B108.3
N1—K1—O184.67 (7)O2—C13—H13A109.8
N1—K1—O3131.24 (7)O2—C13—H13B109.8
N2—K1—O6148.34 (6)O2—C13—C12109.3 (3)
N2—K1—O479.02 (6)H13A—C13—H13B108.3
N2—K1—O1131.73 (7)C12—C13—H13A109.8
N2—K1—O398.36 (7)C12—C13—H13B109.8
O1—K1—O656.58 (6)Si1—C7—H7A109.5
O1—K1—O4149.08 (7)Si1—C7—H7B109.5
O1—K1—O3108.60 (7)Si1—C7—H7C109.5
N1—Si1—C6113.64 (13)H7A—C7—H7B109.5
N1—Si1—C7115.16 (15)H7A—C7—H7C109.5
N1—Si1—C8108.62 (15)H7B—C7—H7C109.5
C6—Si1—C7106.12 (17)Si1—C8—H8A109.5
C8—Si1—C6105.50 (16)Si1—C8—H8B109.5
C8—Si1—C7107.20 (19)Si1—C8—H8C109.5
N3—Si2—C10112.8 (3)H8A—C8—H8B109.5
N3—Si2—C9116.3 (3)H8A—C8—H8C109.5
N3—Si2—C11104.5 (3)H8B—C8—H8C109.5
C10—Si2—C11111.1 (5)O1—C12—C13114.5 (3)
C9—Si2—C10104.6 (5)O1—C12—H12A108.6
C9—Si2—C11107.5 (3)O1—C12—H12B108.6
C19—O5—K1112.66 (16)C13—C12—H12A108.6
C20—O5—K1118.66 (16)C13—C12—H12B108.6
C20—O5—C19114.1 (2)H12A—C12—H12B107.6
C21—O6—K1111.44 (17)O2—C14—C15110.1 (3)
C22—O6—K1115.64 (18)O2—C14—H14A105 (2)
C22—O6—C21113.4 (3)O2—C14—H14B108 (3)
C13—O2—K1120.8 (2)C15—C14—H14A115 (2)
C14—O2—K1122.3 (2)C15—C14—H14B113 (3)
C14—O2—C13109.6 (3)H14A—C14—H14B105 (4)
C18—O4—K1113.71 (18)O3—C15—C14109.8 (3)
C17—O4—K1118.3 (2)O3—C15—H15A109.7
C17—O4—C18112.3 (2)O3—C15—H15B109.7
Si1—N1—K1133.89 (12)C14—C15—H15A109.7
C1—N1—K198.06 (16)C14—C15—H15B109.7
C1—N1—Si1127.94 (19)H15A—C15—H15B108.2
C1—N2—K195.27 (16)O3—C16—H16A109.8
C5—N2—K1142.86 (18)O3—C16—H16B109.8
C5—N2—C1120.2 (2)O3—C16—C17109.3 (4)
C23—O1—K1116.16 (18)H16A—C16—H16B108.3
C23—O1—C12116.6 (3)C17—C16—H16A109.8
C12—O1—K1108.0 (2)C17—C16—H16B109.8
C15—O3—K1106.81 (19)O4—C17—C16108.0 (3)
C16—O3—K1112.76 (19)O4—C17—H17A110.1
C16—O3—C15112.5 (3)O4—C17—H17B110.1
N1—C1—K158.17 (14)C16—C17—H17A110.1
N1—C1—N2116.8 (2)C16—C17—H17B110.1
N1—C1—C2125.4 (3)H17A—C17—H17B108.4
N2—C1—K159.93 (14)Si2—C10—H10A109.5
N2—C1—C2117.8 (3)Si2—C10—H10B109.5
C2—C1—K1168.24 (18)Si2—C10—H10C109.5
Si2—N3—H3121 (3)H10A—C10—H10B109.5
C5—N3—Si2129.1 (3)H10A—C10—H10C109.5
C5—N3—H3110 (3)H10B—C10—H10C109.5
C5—N3—Si2'143.3 (4)Si2—C9—H9A109.5
Si2'—N3—H3104 (3)Si2—C9—H9B109.5
N2—C5—N3115.7 (3)Si2—C9—H9C109.5
N2—C5—C4123.1 (3)H9A—C9—H9B109.5
N3—C5—C4121.1 (3)H9A—C9—H9C109.5
C1—C2—H2119.8H9B—C9—H9C109.5
C3—C2—C1120.4 (3)Si2—C11—H11A109.5
C3—C2—H2119.8Si2—C11—H11B109.5
O5—C19—H19A109.2Si2—C11—H11C109.5
O5—C19—H19B109.2H11A—C11—H11B109.5
O5—C19—C18112.0 (2)H11A—C11—H11C109.5
H19A—C19—H19B107.9H11B—C11—H11C109.5
C18—C19—H19A109.2H9'A—C9'—H9'B109.5
C18—C19—H19B109.2H9'A—C9'—H9'C109.5
O4—C18—C19108.4 (2)H9'B—C9'—H9'C109.5
O4—C18—H18A110.0Si2'—C9'—H9'A109.5
O4—C18—H18B110.0Si2'—C9'—H9'B109.5
C19—C18—H18A110.0Si2'—C9'—H9'C109.5
C19—C18—H18B110.0N3—Si2'—C9'103.4 (7)
H18A—C18—H18B108.4C10'—Si2'—N3109.7 (10)
C5—C4—H4121.4C10'—Si2'—C9'115.2 (16)
C3—C4—C5117.2 (3)C10'—Si2'—C11'102.5 (16)
C3—C4—H4121.4C11'—Si2'—N3119.0 (8)
C2—C3—C4121.2 (3)C11'—Si2'—C9'107.7 (11)
C2—C3—H3A119.4Si2'—C10'—H10D109.5
C4—C3—H3A119.4Si2'—C10'—H10E109.5
O5—C20—H20A110.1Si2'—C10'—H10F109.5
O5—C20—H20B110.1H10D—C10'—H10E109.5
O5—C20—C21107.9 (3)H10D—C10'—H10F109.5
H20A—C20—H20B108.4H10E—C10'—H10F109.5
C21—C20—H20A110.1Si2'—C11'—H11D109.5
C21—C20—H20B110.1Si2'—C11'—H11E109.5
Si1—C6—H6A109.5Si2'—C11'—H11F109.5
Si1—C6—H6B109.5H11D—C11'—H11E109.5
Si1—C6—H6C109.5H11D—C11'—H11F109.5
H6A—C6—H6B109.5H11E—C11'—H11F109.5
H6A—C6—H6C109.5
K1—O5—C19—C1864.4 (3)C1—N2—C5—C41.4 (4)
K1—O5—C20—C2153.6 (3)C1—C2—C3—C40.6 (5)
K1—O6—C21—C2047.2 (3)N3—C5—C4—C3179.5 (3)
K1—O6—C22—C2344.1 (3)C5—N2—C1—K1168.7 (3)
K1—O2—C13—C1223.9 (4)C5—N2—C1—N1178.4 (2)
K1—O2—C14—C1532.7 (4)C5—N2—C1—C21.9 (3)
K1—O4—C18—C1931.6 (3)C5—N3—Si2'—C9'85.7 (12)
K1—O4—C17—C1642.1 (5)C5—N3—Si2'—C10'37.6 (19)
K1—N1—C1—N213.2 (2)C5—N3—Si2'—C11'155.1 (9)
K1—N1—C1—C2166.5 (2)C5—C4—C3—C21.1 (5)
K1—N2—C1—N112.9 (2)C19—O5—C20—C21169.9 (2)
K1—N2—C1—C2166.8 (2)C18—O4—C17—C16177.7 (4)
K1—N2—C5—N320.9 (4)C20—O5—C19—C1874.7 (3)
K1—N2—C5—C4159.7 (2)C6—Si1—N1—K1136.60 (17)
K1—O1—C23—C2257.4 (3)C6—Si1—N1—C138.6 (3)
K1—O1—C12—C1359.2 (4)C21—O6—C22—C23174.5 (3)
K1—O3—C15—C1460.4 (3)C23—O1—C12—C1373.7 (4)
K1—O3—C16—C1759.7 (4)C22—O6—C21—C20179.8 (3)
K1—C1—C2—C376.7 (10)C13—O2—C14—C15177.2 (3)
Si1—N1—C1—K1176.5 (3)C7—Si1—N1—K1100.7 (2)
Si1—N1—C1—N2163.35 (19)C7—Si1—N1—C184.1 (3)
Si1—N1—C1—C216.9 (4)C8—Si1—N1—K119.5 (2)
Si2—N3—C5—N2175.9 (3)C8—Si1—N1—C1155.7 (2)
Si2—N3—C5—C43.5 (5)C12—O1—C23—C22173.6 (3)
O5—C19—C18—O464.3 (3)C14—O2—C13—C12174.6 (3)
O5—C20—C21—O666.8 (3)C15—O3—C16—C17179.4 (3)
O2—C13—C12—O157.3 (5)C16—O3—C15—C14175.4 (3)
O2—C14—C15—O364.3 (4)C17—O4—C18—C19169.3 (3)
N1—C1—C2—C3179.4 (3)C10—Si2—N3—C576.5 (6)
N2—C1—C2—C30.9 (4)C9—Si2—N3—C544.4 (5)
N2—C5—C4—C30.1 (4)C11—Si2—N3—C5162.7 (4)
O1—C23—C22—O666.8 (3)Si2'—N3—C5—N2163.3 (7)
O3—C16—C17—O468.1 (5)Si2'—N3—C5—C417.3 (8)
C1—N2—C5—N3178.0 (2)
 

Acknowledgements

The authors would like to thank Armstrong State University for funding.

References

First citationClegg, W. & Liddle, S. T. (2004). Acta Cryst. E60, m1495–m1497.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDanièle, S., Drost, C., Gehrhus, B., Hawkins, S. M., Hitchcock, P. B., Lappert, M. F., Merle, P. G. & Bott, S. G. (2001). J. Chem. Soc. Dalton Trans. pp. 3179–3188.  Web of Science CSD CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLiddle, S. T. & Clegg, W. (2001). J. Chem. Soc. Dalton Trans. pp. 402–408.  Google Scholar
First citationLiddle, S. T. & Clegg, W. (2002). Polyhedron, 21, 2451–2455.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds