organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(7R)-6-Methyl-7,9-bis­­(prop-2-yn-1-yl)-7H,8H,9H-1,2,4-triazolo[4,3-b][1,2,4]triazepin-8-one

aLaboratoire de Chimie Organique Hétérocyclique, URAC 21, Pôle de Compétence Pharmacochimie, Av Ibn Battouta, BP 1014, Faculté des Sciences, Mohammed V University, Rabat, Morocco, bMedicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, 10170 Rabat, Morocco, and cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: youness.chimie14@gmail.com

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México (Received 27 July 2016; accepted 2 August 2016; online 5 August 2016)

In the title mol­ecule, C12H11N5O, the seven-membered ring derived from triazepine adopts a boat conformation. Inter­molecular C—H⋯N hydrogen bonds and C—H⋯π-ring inter­actions form columns of mol­ecules parallel to the a axis, which are further associated into the three-dimensional crystal structure by additional C—H⋯O hydrogen bonds.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Fused triazepines with a bridged nitro­gen atom in heterocyclic systems exhibit inter­esting biological properties (Groszkowski & Wrona, 1978[Groszkowski, S. & Wrona, J. (1978). Pol. J. Pharmacol. Pharm. 5, 713-715.]; Lenman et al., 1997[Lenman, M. M., Lewis, A. & Gani, D. (1997). J. Chem. Soc. Perkin Trans. 1, pp. 2297-2312.]). Triazepine derivatives have also been reported to possess anti­fungal activity (Gupta et al., 2011[Gupta, M., Paul, S. & Gupta, R. (2011). Eur. J. Med. Chem. 46, 631-635.]). As a continuation of our previous studies on the synthesis and reactivity of fused triazepines (Essassi et al., 1977[Essassi, E. M., Lavergne, J.-P. & Viallffont, Ph. (1977). Tetrahedron, 33, 2807-2812.]; Zemama et al., 2009[Zemama, R. M., Amari, I., Bouhfid, R., Essassi, E. M. & Ng, S. W. (2009). Acta Cryst. E65, o2152.]; Harmaoui et al., 2015[Harmaoui, A., Bouhfid, R., Essassi, E. M., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, o1-o2.]), we report the synthesis and crystal structure of the title compound (Fig. 1[link]). A puckering analysis of the seven-membered ring yielded the parameters q2 = 0.847 (1) Å, φ2 = 228.47 (8)°, q3 = 0.235 (1) Å, and φ3 = 79.7 (3)°. These metrics indicate that the ring adopts a boat conformation.

[Figure 1]
Figure 1
The title mol­ecule with 30% probability ellipsoids for non-H atoms. Only one orientation of the disordered propynyl group C12/C13/C14 is shown.

The mol­ecules are stacked parallel to the a axis through the action of inter­molecular C7—H7⋯N4i hydrogen bonds [symmetry code: (i) 1 − x, 1 − y, 1 − z; Table 1[link]] and C12—H12Bπ(Cgii) inter­actions [symmetry code: (ii) 2 − x, 1 − y, 1 − z; Cg is the centroid of the C1/C4/N1/N4/N5 ring], characterized by H12BCgii = 3.217 Å and C12—H12BCgii = 138°. Finally, inter­molecular C4—H4⋯O1iii hydrogen bonds [symmetry code: (iii) 1 − x, [{1\over 2}] + y, [{1\over 2}] − z; Table 1[link]] tie the columns together to form the full three-dimensional structure (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯N4i 0.98 2.40 3.164 (2) 135
C4—H4⋯O1ii 0.93 2.23 3.147 (2) 167
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Packing viewed along the a axis with C—H⋯O hydrogen bonds shown as dotted lines.

Synthesis and crystallization

To a solution of 6-methyl-7H-[1,2,4]triazolo[4,3-b][1,2,4]triazepin-8(9H)-one (0.3 g, 1.82 mmol) in N,N-di­methyl­formamide (10 ml), was added potassium carbonate (0.25 g, 1.82 mmol), propargyl bromide (0.14 ml, 1.82 mmol) and a catalytic amount of tetra-n-butyl­ammonium bromide. The reaction mixture was stirred for 12 h. The solution was then taken to dryness under reduced pressure and the residue was extracted with di­chloro­methane. The precipitate formed under cooling was filtered off and recrystallized from ethanol solutionto give colourless crystals in 30% yield.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The propynyl substituent attached to N3 is disordered over two sites, modelled with C12/C13/C14 [occupancy: 0.610 (15)] and C12A/C13A/C14A [occupancy:0.390 (15)]. The components of the disorder were refined with restraints on both the geometry and displacement parameters.

Table 2
Experimental details

Crystal data
Chemical formula C12H11N5O
Mr 241.26
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 7.5436 (3), 15.6498 (6), 10.9701 (4)
β (°) 108.334 (1)
V3) 1229.34 (8)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.42 × 0.42 × 0.31
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.89, 0.97
No. of measured, independent and observed [I > 2σ(I)] reflections 23271, 3313, 2701
Rint 0.031
(sin θ/λ)max−1) 0.686
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.143, 1.05
No. of reflections 3313
No. of parameters 174
No. of restraints 28
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.49, −0.18
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

(7R)-6-Methyl-7,9-bis(prop-2-yn-1-yl)-7H,8H,9H-1,2,4-triazolo[4,3-b][1,2,4]triazepin-8-one top
Crystal data top
C12H11N5OF(000) = 504
Mr = 241.26Dx = 1.304 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.5436 (3) ÅCell parameters from 9984 reflections
b = 15.6498 (6) Åθ = 2.4–29.1°
c = 10.9701 (4) ŵ = 0.09 mm1
β = 108.334 (1)°T = 296 K
V = 1229.34 (8) Å3Block, colourless
Z = 40.42 × 0.42 × 0.31 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
3313 independent reflections
Radiation source: fine-focus sealed tube2701 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 8.3333 pixels mm-1θmax = 29.2°, θmin = 2.4°
φ and ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 2121
Tmin = 0.89, Tmax = 0.97l = 1514
23271 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0829P)2 + 0.1647P]
where P = (Fo2 + 2Fc2)/3
3313 reflections(Δ/σ)max < 0.001
174 parametersΔρmax = 0.49 e Å3
28 restraintsΔρmin = 0.18 e Å3
Special details top

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, colllected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 7 sec/frame.

Refinement. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å). All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. The propynyl substituent attached to N3 is disordered over two sites in a 61/39 ratio. The components of the disorder were refined with restraints that their geometries be comparable.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.53407 (14)0.26656 (6)0.38907 (9)0.0503 (3)
N10.54858 (14)0.52089 (6)0.27441 (9)0.0370 (2)
N20.46611 (15)0.48217 (7)0.15514 (9)0.0403 (2)
N30.66193 (13)0.39844 (6)0.41282 (9)0.0364 (2)
C10.64572 (15)0.48540 (7)0.38983 (10)0.0338 (2)
C40.5849 (2)0.60626 (8)0.29144 (14)0.0477 (3)
H40.53960.64740.22820.057*
N40.73180 (15)0.54449 (7)0.47134 (10)0.0434 (3)
C50.37243 (15)0.41413 (8)0.15763 (10)0.0366 (3)
N50.69043 (17)0.62237 (7)0.40691 (12)0.0508 (3)
C60.3048 (2)0.36453 (11)0.03514 (13)0.0561 (4)
H6A0.17330.35400.01490.084*
H6B0.37020.31110.04500.084*
H6C0.32740.39670.03300.084*
C70.33705 (15)0.38234 (7)0.27846 (10)0.0336 (2)
H70.31010.43230.32350.040*
C80.17263 (17)0.32044 (9)0.25592 (14)0.0477 (3)
H8A0.19480.27060.21030.057*
H8B0.16400.30160.33810.057*
C90.00402 (19)0.36025 (11)0.18177 (16)0.0561 (4)
C100.1441 (2)0.39323 (15)0.1201 (2)0.0803 (6)
H100.25450.41920.07150.096*
C110.51588 (15)0.34220 (7)0.36473 (10)0.0345 (2)
C120.8373 (10)0.3649 (11)0.5031 (6)0.0457 (7)0.610 (15)
H12A0.84270.30380.49020.055*0.610 (15)
H12B0.94200.39080.48350.055*0.610 (15)
C130.8572 (15)0.3810 (5)0.6390 (6)0.0565 (12)0.610 (15)
C140.8738 (13)0.3912 (7)0.7481 (6)0.0894 (19)0.610 (15)
H140.88700.39920.83450.107*0.610 (15)
C12A0.8455 (15)0.3695 (17)0.4981 (8)0.0457 (7)0.390 (15)
H12C0.87690.31510.46770.055*0.390 (15)
H12D0.94060.41060.49570.055*0.390 (15)
C13A0.843 (2)0.3600 (8)0.6311 (9)0.0565 (12)0.390 (15)
C14A0.853 (2)0.3561 (9)0.7398 (9)0.0894 (19)0.390 (15)
H14A0.86030.35300.82600.107*0.390 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0540 (5)0.0310 (4)0.0566 (5)0.0013 (4)0.0044 (4)0.0021 (4)
N10.0419 (5)0.0323 (5)0.0368 (5)0.0023 (4)0.0123 (4)0.0002 (3)
N20.0458 (6)0.0431 (6)0.0320 (5)0.0004 (4)0.0122 (4)0.0007 (4)
N30.0315 (5)0.0330 (5)0.0392 (5)0.0002 (4)0.0033 (4)0.0000 (4)
C10.0316 (5)0.0337 (6)0.0362 (5)0.0023 (4)0.0108 (4)0.0026 (4)
C40.0533 (7)0.0321 (6)0.0587 (8)0.0032 (5)0.0190 (6)0.0031 (5)
N40.0440 (5)0.0382 (6)0.0459 (6)0.0079 (4)0.0109 (4)0.0092 (4)
C50.0365 (6)0.0405 (6)0.0307 (5)0.0050 (4)0.0075 (4)0.0036 (4)
N50.0528 (6)0.0351 (6)0.0637 (7)0.0073 (5)0.0173 (6)0.0077 (5)
C60.0615 (9)0.0670 (9)0.0367 (6)0.0035 (7)0.0108 (6)0.0162 (6)
C70.0320 (5)0.0339 (5)0.0328 (5)0.0019 (4)0.0074 (4)0.0033 (4)
C80.0376 (6)0.0458 (7)0.0550 (7)0.0094 (5)0.0078 (5)0.0014 (5)
C90.0356 (6)0.0638 (9)0.0651 (9)0.0079 (6)0.0105 (6)0.0065 (7)
C100.0416 (8)0.1020 (16)0.0906 (14)0.0074 (9)0.0111 (8)0.0008 (11)
C110.0356 (5)0.0321 (5)0.0337 (5)0.0020 (4)0.0078 (4)0.0024 (4)
C120.0305 (8)0.0461 (15)0.0528 (8)0.0049 (9)0.0024 (6)0.0016 (7)
C130.0455 (17)0.058 (4)0.0515 (11)0.014 (3)0.0054 (11)0.0008 (15)
C140.088 (3)0.112 (5)0.0508 (13)0.049 (4)0.0025 (14)0.004 (2)
C12A0.0305 (8)0.0461 (15)0.0528 (8)0.0049 (9)0.0024 (6)0.0016 (7)
C13A0.0455 (17)0.058 (4)0.0515 (11)0.014 (3)0.0054 (11)0.0008 (15)
C14A0.088 (3)0.112 (5)0.0508 (13)0.049 (4)0.0025 (14)0.004 (2)
Geometric parameters (Å, º) top
O1—C111.2117 (14)C7—C111.5189 (15)
N1—C41.3649 (16)C7—C81.5314 (16)
N1—C11.3657 (14)C7—H70.9800
N1—N21.3979 (13)C8—C91.4641 (19)
N2—C51.2830 (16)C8—H8A0.9700
N3—C111.3789 (14)C8—H8B0.9700
N3—C11.3824 (15)C9—C101.179 (2)
N3—C121.4773 (18)C10—H100.9300
N3—C12A1.477 (2)C12—C131.472 (4)
C1—N41.3082 (14)C12—H12A0.9700
C4—N51.2913 (19)C12—H12B0.9700
C4—H40.9300C13—C141.174 (3)
N4—N51.3941 (16)C14—H140.9300
C5—C61.4957 (16)C12A—C13A1.472 (4)
C5—C71.5160 (15)C12A—H12C0.9700
C6—H6A0.9600C12A—H12D0.9700
C6—H6B0.9600C13A—C14A1.174 (3)
C6—H6C0.9600C14A—H14A0.9300
C4—N1—C1104.19 (10)C11—C7—H7107.5
C4—N1—N2124.30 (10)C8—C7—H7107.5
C1—N1—N2129.98 (10)C9—C8—C7111.70 (11)
C5—N2—N1115.21 (9)C9—C8—H8A109.3
C11—N3—C1122.98 (9)C7—C8—H8A109.3
C11—N3—C12118.0 (7)C9—C8—H8B109.3
C1—N3—C12118.8 (7)C7—C8—H8B109.3
C11—N3—C12A121.5 (11)H8A—C8—H8B107.9
C1—N3—C12A115.4 (11)C10—C9—C8178.34 (19)
N4—C1—N1110.63 (10)C9—C10—H10180.0
N4—C1—N3125.09 (11)O1—C11—N3121.18 (10)
N1—C1—N3124.09 (10)O1—C11—C7123.93 (10)
N5—C4—N1111.14 (12)N3—C11—C7114.87 (9)
N5—C4—H4124.4C13—C12—N3113.7 (6)
N1—C4—H4124.4C13—C12—H12A108.8
C1—N4—N5106.72 (10)N3—C12—H12A108.8
N2—C5—C6116.50 (11)C13—C12—H12B108.8
N2—C5—C7122.72 (10)N3—C12—H12B108.8
C6—C5—C7120.73 (11)H12A—C12—H12B107.7
C4—N5—N4107.30 (10)C14—C13—C12177.9 (9)
C5—C6—H6A109.5C13—C14—H14180.0
C5—C6—H6B109.5C13A—C12A—N3110.9 (8)
H6A—C6—H6B109.5C13A—C12A—H12C109.5
C5—C6—H6C109.5N3—C12A—H12C109.5
H6A—C6—H6C109.5C13A—C12A—H12D109.5
H6B—C6—H6C109.5N3—C12A—H12D109.5
C5—C7—C11108.32 (9)H12C—C12A—H12D108.0
C5—C7—C8115.01 (9)C14A—C13A—C12A175.1 (17)
C11—C7—C8110.76 (9)C13A—C14A—H14A180.0
C5—C7—H7107.5
C4—N1—N2—C5151.65 (12)N2—C5—C7—C1175.45 (14)
C1—N1—N2—C544.75 (17)C6—C5—C7—C11102.00 (12)
C4—N1—C1—N40.99 (13)N2—C5—C7—C8160.04 (11)
N2—N1—C1—N4167.07 (11)C6—C5—C7—C822.50 (16)
C4—N1—C1—N3174.20 (11)C5—C7—C8—C961.48 (15)
N2—N1—C1—N38.12 (18)C11—C7—C8—C9175.30 (11)
C11—N3—C1—N4145.40 (12)C1—N3—C11—O1178.44 (11)
C12—N3—C1—N428.4 (3)C12—N3—C11—O14.6 (3)
C12A—N3—C1—N431.9 (5)C12A—N3—C11—O11.3 (5)
C11—N3—C1—N140.11 (16)C1—N3—C11—C72.93 (15)
C12—N3—C1—N1146.1 (3)C12—N3—C11—C7176.7 (3)
C12A—N3—C1—N1142.6 (5)C12A—N3—C11—C7179.9 (5)
C1—N1—C4—N51.42 (15)C5—C7—C11—O1112.30 (13)
N2—N1—C4—N5168.53 (11)C8—C7—C11—O114.70 (16)
N1—C1—N4—N50.24 (13)C5—C7—C11—N366.29 (12)
N3—C1—N4—N5174.88 (11)C8—C7—C11—N3166.71 (10)
N1—N2—C5—C6171.81 (11)C11—N3—C12—C1398.7 (11)
N1—N2—C5—C75.75 (16)C1—N3—C12—C1375.3 (11)
N1—C4—N5—N41.31 (16)C11—N3—C12A—C13A80.7 (18)
C1—N4—N5—C40.65 (15)C1—N3—C12A—C13A96.7 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···N4i0.982.403.164 (2)135
C4—H4···O1ii0.932.233.147 (2)167
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1/2, z+1/2.
 

Acknowledgements

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

References

First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEssassi, E. M., Lavergne, J.-P. & Viallffont, Ph. (1977). Tetrahedron, 33, 2807–2812.  CrossRef CAS Web of Science Google Scholar
First citationGroszkowski, S. & Wrona, J. (1978). Pol. J. Pharmacol. Pharm. 5, 713–715.  Google Scholar
First citationGupta, M., Paul, S. & Gupta, R. (2011). Eur. J. Med. Chem. 46, 631–635.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHarmaoui, A., Bouhfid, R., Essassi, E. M., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, o1–o2.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLenman, M. M., Lewis, A. & Gani, D. (1997). J. Chem. Soc. Perkin Trans. 1, pp. 2297–2312.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZemama, R. M., Amari, I., Bouhfid, R., Essassi, E. M. & Ng, S. W. (2009). Acta Cryst. E65, o2152.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds