metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bis(methanol-κO)bis­­{5-(pyridin-2-yl-κN)-3-[4-(pyridin-4-yl)phen­yl]-1H-1,2,4-triazol-1-ido-κN1}cobalt(II)

aCollege of Materials and Chemical Engineering, China Three Gorges University, YiChang 443002, People's Republic of China
*Correspondence e-mail: 18162391708@163.com, dongww1@126.com

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México (Received 14 July 2016; accepted 16 August 2016; online 26 August 2016)

The asymmetric unit of the title CoII complex, [Co(C18H12N5)2(CH3OH)2], contains one half-mol­ecule, and the complex is completed by application of an inversion centre. The CoII cation is coordinated by two deprotonated 1,2,4-triazole-based ligands, and two methanol mol­ecules, in an N4O2 octa­hedral coordination geometry. Four N atoms are placed in the equatorial plane, while trans-methanol mol­ecules occupy the axial positions. In the crystal, neighbouring complexes are linked via O—H⋯N hydrogen-bonding inter­actions, involving the methanol as donor and non-coordinating N triazole sites as acceptor groups, forming a two-dimensional network parallel to (100).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The single-crystal X-ray diffraction analysis of the title complex reveals that the CoII atom is six-coordinate. The metal is located on an inversion centre, forming a centrosymmetric complex with coordinating methanol mol­ecules occupying trans sites (Fig. 1[link]). The isotypic complex bearing water as ligands in place of methanol has been reported (Li, 2013a[Li, B. (2013a). Acta Cryst. E69, m141.]). However, for the water-containing complex, the triazole derivative was not planar, while this ligand is almost planar in the title complex. The same triazole derivative has also been used for the synthesis of FeII and ZnII mononuclear complexes (Li, 2013b[Li, B. (2013b). Acta Cryst. E69, m168.],c[Li, B. (2013c). Acta Cryst. E69, m214.]), and polymeric species (Zhang et al., 2012[Zhang, X.-T., Sun, D., Li, B., Fan, L.-M., Li, B. & Wei, P.-H. (2012). Cryst. Growth Des. 12, 3845-3848.], 2013[Zhang, X., Fan, L., Sun, Z., Zhang, W., Li, D., Dou, J. & Han, L. (2013). Cryst. Growth Des. 13, 792-803.]). Multidentate ligands containing 1,2,4-trizaole heterocycle and other N-donor heterocyclic groups are frequently used in the preparation of metal complexes (Gong et al., 2014[Gong, Y., Shi, H.-F., Jiang, P.-G., Hua, W. & Lin, J.-H. (2014). Cryst. Growth Des. 14, 649-657.]; Liu et al., 2015[Liu, Y.-L., Wu, Y.-P., Li, D.-S., Dong, W.-W. & Zhou, C.-S. (2015). J. Solid State Chem. 223, 38-43.]; Dong et al., 2016[Dong, W.-W., Xia, L., Peng, Z., Zhao, J., Wu, Y.-P., Zhang, J. & Li, D.-S. (2016). J. Solid State Chem. 238, 170-174.]).

[Figure 1]
Figure 1
The structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.

The crystal structure features inter­molecular O—H⋯N hydrogen bonds (Table 1[link]) involving the hydroxyl group of MeOH and one triazole N atom, forming a two-dimensional network parallel to (100).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N4i 0.85 (1) 1.92 (2) 2.760 (5) 168 (5)
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Synthesis and crystallization

A mixture of 5-(pyridin-2-yl)-3-[4-(pyridin-4-yl)phen­yl]-1H-1,2,4-triazole (0.15 mmol, 0.0448 g), cobalt(II) nitrate hexa­hydrate (0.10 mmol, 0.0234 g) and CH3OH (12 ml) were placed in a Teflon-lined stainless steel vessel, heated to 437 K for 3 d, followed by slow cooling to room temperature. Yellow prismatic crystals were obtained. Analysis calculated for C38H32CoN10O2: C 63.36, H 4.44, N 19.45%; found: C 63.52, H 4.48, N 19.45%

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Co(C18H12N5)2(CH4O)2]
Mr 719.67
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 13.414 (4), 12.654 (3), 9.964 (1)
β (°) 101.43 (2)
V3) 1657.8 (7)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.57
Crystal size (mm) 0.23 × 0.21 × 0.18
 
Data collection
Diffractometer Bruker SMART 1000 CCD
Absorption correction Multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.880, 0.904
No. of measured, independent and observed [I > 2σ(I)] reflections 17371, 3842, 2915
Rint 0.112
(sin θ/λ)max−1) 0.653
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.074, 0.193, 1.00
No. of reflections 3842
No. of parameters 235
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.43, −0.55
Computer programs: SMART and SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97, SHELXL97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis(methanol-κO)bis{5-(pyridin-2-yl-κN)-3-[4-(pyridin-4-yl)phenyl]-1H-1,2,4-triazol-1-ido-κN1}cobalt(II) top
Crystal data top
[Co(C18H12N5)2(CH4O)2]F(000) = 746
Mr = 719.67Dx = 1.442 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.414 (4) ÅCell parameters from 3457 reflections
b = 12.654 (3) Åθ = 2.2–27.5°
c = 9.964 (1) ŵ = 0.57 mm1
β = 101.43 (2)°T = 296 K
V = 1657.8 (7) Å3Prism, yellow
Z = 20.23 × 0.21 × 0.18 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
3842 independent reflections
Radiation source: fine-focus sealed tube2915 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.112
φ and ω scansθmax = 27.7°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1717
Tmin = 0.880, Tmax = 0.904k = 1616
17371 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.074Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.193H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0867P)2 + 2.491P]
where P = (Fo2 + 2Fc2)/3
3842 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.43 e Å3
1 restraintΔρmin = 0.55 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.50000.50000.00000.0276 (2)
O10.4016 (2)0.5716 (2)0.1228 (3)0.0366 (6)
H10.398 (4)0.6381 (10)0.132 (5)0.055*
N10.4240 (2)0.3508 (2)0.0040 (3)0.0279 (7)
N20.5827 (2)0.4245 (2)0.1702 (3)0.0310 (7)
N30.6646 (2)0.4464 (2)0.2708 (3)0.0315 (7)
N40.6079 (2)0.2819 (2)0.3071 (3)0.0282 (7)
N51.1509 (3)0.3720 (4)1.0761 (4)0.0662 (13)
C10.3465 (3)0.3180 (3)0.1010 (4)0.0334 (8)
H1A0.31780.36510.16940.040*
C20.3072 (3)0.2164 (3)0.1036 (4)0.0387 (9)
H2A0.25340.19530.17250.046*
C30.3500 (3)0.1477 (3)0.0015 (4)0.0399 (10)
H3B0.32560.07890.00180.048*
C40.4283 (3)0.1795 (3)0.1010 (4)0.0337 (8)
H4B0.45610.13360.17140.040*
C50.4649 (3)0.2818 (3)0.0968 (4)0.0255 (7)
C60.5516 (3)0.3269 (3)0.1939 (3)0.0264 (7)
C70.6775 (3)0.3599 (3)0.3507 (4)0.0277 (7)
C80.7604 (3)0.3551 (3)0.4717 (4)0.0299 (8)
C90.8303 (3)0.4378 (3)0.4960 (4)0.0364 (9)
H9A0.82520.49300.43350.044*
C100.9068 (3)0.4394 (3)0.6113 (4)0.0412 (10)
H10A0.95200.49580.62500.049*
C110.9178 (3)0.3579 (3)0.7077 (4)0.0353 (9)
C120.8490 (3)0.2738 (4)0.6814 (4)0.0412 (10)
H12A0.85530.21750.74260.049*
C130.7711 (3)0.2723 (3)0.5654 (4)0.0358 (9)
H13A0.72610.21560.55070.043*
C140.9990 (3)0.3617 (4)0.8330 (4)0.0404 (10)
C151.0129 (4)0.2820 (5)0.9295 (5)0.0670 (17)
H15A0.97220.22200.91570.080*
C161.0886 (4)0.2912 (6)1.0489 (6)0.076 (2)
H16A1.09490.23671.11250.091*
C171.1400 (5)0.4469 (5)0.9823 (6)0.080 (2)
H17A1.18370.50460.99790.096*
C181.0668 (5)0.4453 (5)0.8609 (6)0.0734 (18)
H18A1.06360.50050.79860.088*
C190.3625 (4)0.5204 (3)0.2296 (5)0.0445 (10)
H19A0.32100.56910.26820.067*
H19B0.41800.49710.29960.067*
H19C0.32220.46050.19270.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0360 (4)0.0185 (3)0.0245 (4)0.0016 (3)0.0034 (3)0.0023 (3)
O10.0509 (17)0.0258 (14)0.0336 (14)0.0025 (12)0.0100 (13)0.0025 (11)
N10.0338 (16)0.0222 (15)0.0246 (15)0.0017 (12)0.0020 (13)0.0029 (11)
N20.0351 (17)0.0245 (15)0.0294 (16)0.0022 (12)0.0036 (14)0.0007 (12)
N30.0360 (17)0.0251 (16)0.0290 (16)0.0004 (13)0.0043 (14)0.0003 (12)
N40.0335 (16)0.0230 (15)0.0265 (15)0.0001 (12)0.0021 (13)0.0039 (11)
N50.052 (3)0.092 (4)0.044 (2)0.005 (2)0.015 (2)0.002 (2)
C10.034 (2)0.031 (2)0.0311 (19)0.0014 (15)0.0019 (16)0.0038 (15)
C20.039 (2)0.037 (2)0.034 (2)0.0082 (17)0.0060 (18)0.0045 (17)
C30.048 (2)0.028 (2)0.042 (2)0.0094 (17)0.005 (2)0.0016 (16)
C40.041 (2)0.0261 (19)0.0324 (19)0.0020 (15)0.0035 (17)0.0044 (15)
C50.0308 (18)0.0193 (16)0.0257 (17)0.0013 (13)0.0041 (14)0.0037 (13)
C60.0312 (18)0.0228 (17)0.0239 (17)0.0016 (14)0.0027 (14)0.0030 (13)
C70.0321 (19)0.0249 (17)0.0250 (17)0.0039 (14)0.0031 (15)0.0001 (13)
C80.0286 (18)0.0310 (19)0.0281 (18)0.0020 (14)0.0010 (15)0.0012 (14)
C90.041 (2)0.030 (2)0.035 (2)0.0015 (16)0.0002 (17)0.0049 (15)
C100.041 (2)0.039 (2)0.038 (2)0.0078 (18)0.0053 (19)0.0011 (17)
C110.0308 (19)0.045 (2)0.0284 (19)0.0004 (16)0.0015 (16)0.0031 (16)
C120.042 (2)0.046 (2)0.031 (2)0.0021 (18)0.0049 (18)0.0109 (18)
C130.037 (2)0.039 (2)0.0290 (19)0.0073 (16)0.0007 (17)0.0056 (16)
C140.036 (2)0.049 (2)0.034 (2)0.0000 (18)0.0024 (18)0.0002 (18)
C150.055 (3)0.084 (4)0.051 (3)0.028 (3)0.015 (3)0.023 (3)
C160.055 (3)0.111 (5)0.053 (3)0.022 (3)0.012 (3)0.037 (3)
C170.083 (4)0.073 (4)0.062 (4)0.020 (3)0.036 (3)0.007 (3)
C180.076 (4)0.061 (4)0.066 (4)0.023 (3)0.028 (3)0.014 (3)
C190.054 (3)0.038 (2)0.045 (2)0.0061 (19)0.017 (2)0.0009 (18)
Geometric parameters (Å, º) top
Co1—N22.067 (3)C5—C61.473 (5)
Co1—N2i2.067 (3)C7—C81.471 (5)
Co1—N1i2.142 (3)C8—C131.392 (5)
Co1—N12.142 (3)C8—C91.394 (5)
Co1—O1i2.168 (3)C9—C101.381 (6)
Co1—O12.168 (3)C9—H9A0.9300
O1—C191.432 (5)C10—C111.396 (6)
O1—H10.849 (10)C10—H10A0.9300
N1—C11.338 (5)C11—C121.400 (6)
N1—C51.362 (4)C11—C141.486 (6)
N2—C61.339 (5)C12—C131.396 (5)
N2—N31.361 (4)C12—H12A0.9300
N3—C71.344 (5)C13—H13A0.9300
N4—C61.353 (4)C14—C151.380 (7)
N4—C71.369 (5)C14—C181.387 (7)
N5—C161.314 (8)C15—C161.407 (7)
N5—C171.320 (8)C15—H15A0.9300
C1—C21.388 (6)C16—H16A0.9300
C1—H1A0.9300C17—C181.399 (7)
C2—C31.374 (6)C17—H17A0.9300
C2—H2A0.9300C18—H18A0.9300
C3—C41.372 (6)C19—H19A0.9600
C3—H3B0.9300C19—H19B0.9600
C4—C51.388 (5)C19—H19C0.9600
C4—H4B0.9300
N2—Co1—N2i180.0N4—C6—C5128.5 (3)
N2—Co1—N1i102.48 (12)N3—C7—N4113.6 (3)
N2i—Co1—N1i77.52 (12)N3—C7—C8120.5 (3)
N2—Co1—N177.52 (12)N4—C7—C8125.9 (3)
N2i—Co1—N1102.48 (12)C13—C8—C9118.2 (4)
N1i—Co1—N1180.00 (16)C13—C8—C7122.8 (3)
N2—Co1—O1i88.97 (14)C9—C8—C7119.0 (3)
N2i—Co1—O1i91.03 (14)C10—C9—C8121.3 (4)
N1i—Co1—O1i92.20 (13)C10—C9—H9A119.4
N1—Co1—O1i87.80 (13)C8—C9—H9A119.4
N2—Co1—O191.03 (14)C9—C10—C11121.4 (4)
N2i—Co1—O188.97 (14)C9—C10—H10A119.3
N1i—Co1—O187.80 (13)C11—C10—H10A119.3
N1—Co1—O192.20 (13)C10—C11—C12117.2 (4)
O1i—Co1—O1180.00 (11)C10—C11—C14121.0 (4)
C19—O1—Co1125.7 (3)C12—C11—C14121.8 (4)
C19—O1—H1109 (3)C13—C12—C11121.5 (4)
Co1—O1—H1122 (3)C13—C12—H12A119.2
C1—N1—C5118.4 (3)C11—C12—H12A119.2
C1—N1—Co1125.9 (2)C12—C13—C8120.4 (4)
C5—N1—Co1115.5 (2)C12—C13—H13A119.8
C6—N2—N3107.0 (3)C8—C13—H13A119.8
C6—N2—Co1115.8 (2)C15—C14—C18115.1 (4)
N3—N2—Co1137.2 (2)C15—C14—C11122.6 (4)
C7—N3—N2105.1 (3)C18—C14—C11122.3 (4)
C6—N4—C7101.2 (3)C14—C15—C16120.3 (5)
C16—N5—C17115.8 (5)C14—C15—H15A119.8
N1—C1—C2122.6 (3)C16—C15—H15A119.8
N1—C1—H1A118.7N5—C16—C15124.2 (5)
C2—C1—H1A118.7N5—C16—H16A117.9
C3—C2—C1118.0 (4)C15—C16—H16A117.9
C3—C2—H2A121.0N5—C17—C18124.2 (6)
C1—C2—H2A121.0N5—C17—H17A117.9
C4—C3—C2120.8 (4)C18—C17—H17A117.9
C4—C3—H3B119.6C14—C18—C17120.3 (5)
C2—C3—H3B119.6C14—C18—H18A119.8
C3—C4—C5118.3 (4)C17—C18—H18A119.8
C3—C4—H4B120.8O1—C19—H19A109.5
C5—C4—H4B120.8O1—C19—H19B109.5
N1—C5—C4121.8 (3)H19A—C19—H19B109.5
N1—C5—C6112.7 (3)O1—C19—H19C109.5
C4—C5—C6125.5 (3)H19A—C19—H19C109.5
N2—C6—N4113.2 (3)H19B—C19—H19C109.5
N2—C6—C5118.3 (3)
N2—Co1—O1—C1940.9 (3)C7—N4—C6—N20.7 (4)
N2i—Co1—O1—C19139.1 (3)C7—N4—C6—C5178.2 (4)
N1i—Co1—O1—C19143.3 (3)N1—C5—C6—N23.0 (5)
N1—Co1—O1—C1936.7 (3)C4—C5—C6—N2175.0 (4)
N2—Co1—N1—C1176.5 (3)N1—C5—C6—N4178.2 (4)
N2i—Co1—N1—C13.5 (3)C4—C5—C6—N43.8 (6)
O1i—Co1—N1—C187.1 (3)N2—N3—C7—N40.2 (4)
O1—Co1—N1—C192.9 (3)N2—N3—C7—C8180.0 (3)
N2—Co1—N1—C51.8 (3)C6—N4—C7—N30.3 (4)
N2i—Co1—N1—C5178.2 (3)C6—N4—C7—C8179.5 (4)
O1i—Co1—N1—C587.7 (3)N3—C7—C8—C13173.3 (4)
O1—Co1—N1—C592.3 (3)N4—C7—C8—C136.9 (6)
N1i—Co1—N2—C6179.9 (3)N3—C7—C8—C95.1 (6)
N1—Co1—N2—C60.1 (3)N4—C7—C8—C9174.7 (4)
O1i—Co1—N2—C687.9 (3)C13—C8—C9—C101.4 (6)
O1—Co1—N2—C692.1 (3)C7—C8—C9—C10177.1 (4)
N1i—Co1—N2—N30.3 (4)C8—C9—C10—C110.4 (7)
N1—Co1—N2—N3179.7 (4)C9—C10—C11—C121.1 (7)
O1i—Co1—N2—N391.7 (4)C9—C10—C11—C14178.5 (4)
O1—Co1—N2—N388.3 (4)C10—C11—C12—C131.5 (7)
C6—N2—N3—C70.6 (4)C14—C11—C12—C13178.1 (4)
Co1—N2—N3—C7179.8 (3)C11—C12—C13—C80.5 (7)
C5—N1—C1—C20.8 (6)C9—C8—C13—C120.9 (6)
Co1—N1—C1—C2173.8 (3)C7—C8—C13—C12177.4 (4)
N1—C1—C2—C30.3 (7)C10—C11—C14—C15179.1 (5)
C1—C2—C3—C40.9 (7)C12—C11—C14—C151.3 (7)
C2—C3—C4—C51.7 (6)C10—C11—C14—C180.4 (7)
C1—N1—C5—C40.0 (5)C12—C11—C14—C18179.2 (5)
Co1—N1—C5—C4175.2 (3)C18—C14—C15—C162.8 (9)
C1—N1—C5—C6178.1 (3)C11—C14—C15—C16177.7 (5)
Co1—N1—C5—C63.0 (4)C17—N5—C16—C150.7 (10)
C3—C4—C5—N11.3 (6)C14—C15—C16—N51.3 (11)
C3—C4—C5—C6176.6 (4)C16—N5—C17—C181.1 (11)
N3—N2—C6—N40.8 (4)C15—C14—C18—C172.5 (9)
Co1—N2—C6—N4179.5 (2)C11—C14—C18—C17178.0 (6)
N3—N2—C6—C5178.2 (3)N5—C17—C18—C140.6 (12)
Co1—N2—C6—C51.5 (4)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N4ii0.85 (1)1.92 (2)2.760 (5)168 (5)
Symmetry code: (ii) x+1, y+1/2, z+1/2.
 

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (No. 21301106) and the Project of Hubei Provincial Education Office (No. Q20141201).

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDong, W.-W., Xia, L., Peng, Z., Zhao, J., Wu, Y.-P., Zhang, J. & Li, D.-S. (2016). J. Solid State Chem. 238, 170–174.  Google Scholar
First citationGong, Y., Shi, H.-F., Jiang, P.-G., Hua, W. & Lin, J.-H. (2014). Cryst. Growth Des. 14, 649–657.  Google Scholar
First citationLi, B. (2013a). Acta Cryst. E69, m141.  Google Scholar
First citationLi, B. (2013b). Acta Cryst. E69, m168.  Google Scholar
First citationLi, B. (2013c). Acta Cryst. E69, m214.  Google Scholar
First citationLiu, Y.-L., Wu, Y.-P., Li, D.-S., Dong, W.-W. & Zhou, C.-S. (2015). J. Solid State Chem. 223, 38–43.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, X., Fan, L., Sun, Z., Zhang, W., Li, D., Dou, J. & Han, L. (2013). Cryst. Growth Des. 13, 792–803.  Google Scholar
First citationZhang, X.-T., Sun, D., Li, B., Fan, L.-M., Li, B. & Wei, P.-H. (2012). Cryst. Growth Des. 12, 3845–3848.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds